The Nonstandard Deformation U'_q(so_n) For q a Root of Unity

作者: N. Z. Iorgov , A. U. Klimyk

DOI:

关键词:

摘要: We describe properties of the nonstandard q-deformation U'_q(so_n) universal enveloping algebra U(so_n) Lie so_n which does not coincide with Drinfeld--Jimbo quantum U_q(so_n). In particular, it is shown that there exists an isomorphism from to U_q(sl_n) and finite dimensional irreducible representations separate elements this algebra. Irreducible algebras for q a root unity q^p=1 are given. The main class these act on p^N-dimensional linear space (where N number positive roots so_n) given by r=dim complex parameters. Some classes degenerate also described.

参考文章(13)
Boris Rosenfeld, Algebras and Lie Groups Springer, Boston, MA. pp. 29- 105 ,(1997) , 10.1007/978-1-4757-5325-7_2
Yuriĭ Samoĭlenko, Lyudmila Turowska, Semilinear relations and *-representations of deformations of so(3) Banach Center Publications. ,vol. 40, pp. 21- 40 ,(1997) , 10.4064/-40-1-21-40
V. G. DRINFEL'D, Hopf algebras and the quantum Yang-Baxter equation Proceedings of the USSR Academy of Sciences. ,vol. 32, pp. 254- 258 ,(1985) , 10.1142/9789812798336_0013
Jens Carsten Jantzen, Lectures on quantum groups ,(1995)
D. Arnaudon, A. Chakrabarti, Periodic and Partially Periodic Representations of SU(N)q Communications in Mathematical Physics. ,vol. 139, pp. 461- 478 ,(1991) , 10.1007/BF02101875
A. M. Gavrilik, A. U. Klimyk, q-Deformed Orthogonal and Pseudo-Orthogonal Algebras and Their Representations Letters in Mathematical Physics. ,vol. 21, pp. 215- 220 ,(1991) , 10.1007/BF00420371
D B Fairlie, Quantum deformations of SU(2) Journal of Physics A. ,vol. 23, ,(1990) , 10.1088/0305-4470/23/5/001
W. B. Schmidke, J. Wess, B. Zumino, A q-deformed Lorentz algebra* European Physical Journal C. ,vol. 52, pp. 471- 476 ,(1991) , 10.1007/BF01559443