Physical Human Activity Recognition Using Wearable Sensors.

作者: Ferhat Attal , Samer Mohammed , Mariam Dedabrishvili , Faicel Chamroukhi , Latifa Oukhellou

DOI: 10.3390/S151229858

关键词:

摘要: … This paper focuses on a review of human activities … during daily activities and also to detect unpredictable events that may … classification of daily living human activities using wearable …

参考文章(94)
V. N. Vapnik, The Nature of Statistical Learning Theory. ,(1995)
Michael L. Littman, Nishkam Ravi, Preetham Mysore, Nikhil Dandekar, Activity recognition from accelerometer data innovative applications of artificial intelligence. pp. 1541- 1546 ,(2005)
Mihai Marin-Perianu, Clemens Lombriser, Oliver Amft, Paul Havinga, Gerhard Tröster, Distributed Activity Recognition with Fuzzy-Enabled Wireless Sensor Networks Distributed Computing in Sensor Systems. pp. 296- 313 ,(2008) , 10.1007/978-3-540-69170-9_20
Gaetano Borriello, Blake Hannaford, Jonathan Lester, Tanzeem Choudhury, Nicky Kern, A hybrid discriminative/generative approach for modeling human activities international joint conference on artificial intelligence. pp. 766- 772 ,(2005)
Kerem Altun, Billur Barshan, Human Activity Recognition Using Inertial/Magnetic Sensor Units Human Behavior Understanding. pp. 38- 51 ,(2010) , 10.1007/978-3-642-14715-9_5
Alvin Raj, Amarnag Subramanya, Dieter Fox, Jeff Bilmes, Rao-Blackwellized Particle Filters for Recognizing Activities and Spatial Context from Wearable Sensors Experimental Robotics. pp. 211- 221 ,(2008) , 10.1007/978-3-540-77457-0_20
S.H. Lee, H.D. Park, S.Y. Hong, K.J. Lee, Y.H. Kim, A study on the activity classification using a triaxial accelerometer international conference of the ieee engineering in medicine and biology society. ,vol. 3, pp. 2941- 2943 ,(2003) , 10.1109/IEMBS.2003.1280534
Tâm Huỳnh, Bernt Schiele, Unsupervised Discovery of Structure in Activity Data Using Multiple Eigenspaces Location- and Context-Awareness. pp. 151- 167 ,(2006) , 10.1007/11752967_11
Joyce Ho, Interruptions : using activity transitions to trigger proactive messages Massachusetts Institute of Technology. ,(2004)