New applications of Adomian decomposition method

作者: SA El-Wakil , MA Abdou , None

DOI: 10.1016/J.CHAOS.2005.12.037

关键词:

摘要: Abstract In this article, we have discussed a new application of Adomian decomposition method on nonlinear physical equations. The models interest in physics are considered and solved by means method. behaviour solutions the effects different values t investigated. Numerical illustrations that include investigated to show pertinent features technique.

参考文章(16)
Miki Wadati, The Exact Solution of the Modified Korteweg-de Vries Equation Journal of the Physical Society of Japan. ,vol. 32, pp. 1681- 1681 ,(1972) , 10.1143/JPSJ.32.1681
Stanley J. Farlow, Stephen F. Becker, Partial differential equations for scientists and engineers American Journal of Physics. ,vol. 53, pp. 702- 702 ,(1985) , 10.1119/1.14292
D. Lesnic, Blow-up solutions obtained using the decomposition method Chaos, Solitons & Fractals. ,vol. 28, pp. 776- 787 ,(2006) , 10.1016/J.CHAOS.2005.08.003
Lixin Tian, Jiuli Yin, Stability of multi-compacton solutions and Backlund transformation in K(m,n,1) Chaos Solitons & Fractals. ,vol. 23, pp. 159- 169 ,(2004) , 10.1016/J.CHAOS.2004.04.004
R. S. Johnson, P. G. Drazin, Solitons: An Introduction ,(1989)
V. Seng, K. Abbaoui, Y. Cherruault, Adomian's polynomials for nonlinear operators Mathematical and Computer Modelling. ,vol. 24, pp. 59- 65 ,(1996) , 10.1016/0895-7177(96)00080-5
E.Y. Deeba, S.A. Khuri, A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation Journal of Computational Physics. ,vol. 124, pp. 442- 448 ,(1996) , 10.1006/JCPH.1996.0071