Theory of Turbulence

作者: S. Chandrasekhar

DOI: 10.1103/PHYSREV.102.941

关键词:

摘要: It is pointed out if there are aspects of the turbulence phenomenon which truly universal, then they should be capable being characterized in terms two parameters e and ν denote constant rate dissipation energy per unit mass kinemetic viscosity respectively these only without reference either to mean square velocity 1 2 > Av or size largest containing eddies. This a slight modification Kolmogoroff's similarity principles as currently formulated. appears that χ=∂ψ(r, t)/∂r, where ψ(r, t)=½ '-μ '') , μ ' '' velocities x-direction (say) at points on x-axis separated by distance r times an interval t apart, can so specified. The require this case, χ form χ≡(e 3 /ν)¼X(r(e/ν ) ¼ t(e/ν) ½ ), X universal function arguments In limit zero viscosity, must have more special χ→ Γ ⅓ σ(t/r ⅔ (ν→0). boundary conditions σ(x) σ=σ 0 (>0) dσ/dx=0 x=0 σ→0 x→∞. shown with premises theory described earlier paper, equation for derived compatible requirements particular ordinary differential σ leads solved. solution found satisfies all problem unique, apart from adjustable scale factors. predicted evolutions vorticity correlations illustrated.

参考文章(6)
A Theory of Turbulence Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 229, pp. 1- 19 ,(1955) , 10.1098/RSPA.1955.0070
W. Heisenberg, Zur statistischen Theorie der Turbulenz European Physical Journal. ,vol. 124, pp. 628- 657 ,(1948) , 10.1007/BF01668899
Joseph W. Chamberlain, Paul H. Roberts, Turbulence Spectrum in Chandrasekhar's Theory Physical Review. ,vol. 99, pp. 1674- 1677 ,(1955) , 10.1103/PHYSREV.99.1674
G. K. Batchelor, Kolmogoroff's theory of locally isotropic turbulence Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 43, pp. 533- 559 ,(1947) , 10.1017/S0305004100023793
G. I. Taylor, Statistical Theory of Turbulence Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 151, pp. 421- 444 ,(1935) , 10.1098/RSPA.1935.0158
Hydromagnetic turbulence. I. A deductive theory Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 233, pp. 322- 330 ,(1955) , 10.1098/RSPA.1955.0269