Review and comparison of empirical thermospheric mass density models

作者: Changyong He , Yang Yang , Brett Carter , Emma Kerr , Suqin Wu

DOI: 10.1016/J.PAEROSCI.2018.10.003

关键词:

摘要: Abstract Atmospheric drag, as one of the largest non-gravitational perturbations in low Earth orbit (LEO), can dramatically decay LEO satellites with both secular and periodic effects. Hence, it plays a critical role prediction related products, research on determination, orbital uncertainty propagation collision avoidance. Although many empirical thermospheric mass density (TMD) models have been proposed past few decades, precise determination atmospheric drag is still challenging task. In order to give comprehensive review current TMD models, focusing their impact dynamics, this summarises investigates most representative classes including Jacchia, Mass Spectrometer Incoherent Scatter (MSIS), Jacchia-Bowman (JB), Drag Temperature Model (DTM). Twelve are selected for further comparison terms spatial variations assessing ability capture complex features, e.g., equatorial anomaly (EMA). Further validation done accelerometer-derived from satellites. The results show that only DTM2013 EMA feature coefficient calculated by physical used estimation may be underestimated. performance these comprehensively evaluated under different solar geomagnetic conditions. JB2008 outperform other during high activity. Standard deviation found less affected bias accelerometer- model-derived TMD, than mean value root-mean-square error. coupling effect between ballistic coefficient, potential directions future efforts modelling also discussed.

参考文章(103)
Jiuhou Lei, Jeffrey P. Thayer, Wenbin Wang, Xiaoli Luan, Xiankang Dou, Raymond Roble, Simulations of the equatorial thermosphere anomaly: Physical mechanisms for crest formation Journal of Geophysical Research: Space Physics. ,vol. 117, pp. n/a- n/a ,(2012) , 10.1029/2012JA017613
David A. Vallado, David Finkleman, A critical assessment of satellite drag and atmospheric density modeling Acta Astronautica. ,vol. 95, pp. 141- 165 ,(2014) , 10.1016/J.ACTAASTRO.2013.10.005
I. I. Volkov, A. I. Semenov, V. V. Suevalov, Analysis of thermospheric density variations neglected in modern atmospheric models using accelerometer data Solar System Research. ,vol. 42, pp. 51- 62 ,(2008) , 10.1134/S0038094608010061
Alan E. Hedin, MSIS-86 Thermospheric Model Journal of Geophysical Research. ,vol. 92, pp. 4649- 4662 ,(1987) , 10.1029/JA092IA05P04649
J. T. Emmert, J. M. Picone, R. R. Meier, Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects Geophysical Research Letters. ,vol. 35, ,(2008) , 10.1029/2007GL032809
Francis K. Chun, Delores J. Knipp, Matthew G. McHarg, Gang Lu, Barbara A. Emery, Susanne Vennerstrøm, Oleg A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating Geophysical Research Letters. ,vol. 26, pp. 1101- 1104 ,(1999) , 10.1029/1999GL900196
Liying Qian, Stanley C. Solomon, Thermospheric Density: An Overview of Temporal and Spatial Variations Space Science Reviews. ,vol. 168, pp. 147- 173 ,(2012) , 10.1007/S11214-011-9810-Z
Jung Soo Kim, Julio V. Urbina, Timothy J. Kane, David B. Spencer, Improvement of TIE-GCM thermospheric density predictions via incorporation of helium data from NRLMSISE-00 Journal of Atmospheric and Solar-Terrestrial Physics. ,vol. 77, pp. 19- 25 ,(2012) , 10.1016/J.JASTP.2011.10.018
Eelco Doornbos, Jose van den IJssel, Hermann Luhr, Matthias Forster, Georg Koppenwallner, Neutral Density and Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers on Satellites Journal of Spacecraft and Rockets. ,vol. 47, pp. 580- 589 ,(2010) , 10.2514/1.48114
W. Kent Tobiska, Validating the solar EUV Proxy, E10.7 Journal of Geophysical Research: Space Physics. ,vol. 106, pp. 29969- 29978 ,(2001) , 10.1029/2000JA000210