Extracellular electron transfer systems fuel cellulose oxidative degradation.

作者: D. Kracher , S. Scheiblbrandner , A. K. G. Felice , E. Breslmayr , M. Preims

DOI: 10.1126/SCIENCE.AAF3165

关键词:

摘要: Ninety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage recalcitrant polysaccharides after activation by an electron donor. Understanding source electrons is fundamental to fungal physiology and will also help with exploitation LPMOs for biomass processing. Using genome data biochemical methods, we characterized compared different extracellular sources LPMOs: cellobiose dehydrogenase, phenols procured from plant or produced fungi, glucose-methanol-choline oxidoreductases that regenerate LPMO-reducing diphenols. Our demonstrate all three these transfer systems are functional their relative importance during cellulose degradation depends on lifestyle. The availability donors required activate attack polysaccharides.

参考文章(108)
Paul M. Wood, Pathways for production of Fenton's reagent by wood-rotting fungi Fems Microbiology Reviews. ,vol. 13, pp. 313- 320 ,(1994) , 10.1111/J.1574-6976.1994.TB00051.X
C. J. Rehmeyer, B. A. Roe, N. Shenoy, M. Stanke, V. Ter-Hovhannisyan, A. Tunlid, R. Velagapudi, T. J. Vision, Q. Zeng, M. E. Zolan, P. J. Pukkila, J. E. Stajich, S. K. Wilke, D. Ahren, C. H. Au, B. W. Birren, M. Borodovsky, C. Burns, B. Canback, L. A. Casselton, C. K. Cheng, J. Deng, F. S. Dietrich, D. C. Fargo, M. L. Farman, A. C. Gathman, J. Goldberg, R. Guigo, P. J. Hoegger, J. B. Hooker, A. Huggins, T. Y. James, T. Kamada, S. Kilaru, C. Kodira, U. Kues, D. Kupfer, H. S. Kwan, A. Lomsadze, W. Li, W. W. Lilly, L.-J. Ma, A. J. Mackey, G. Manning, F. Martin, H. Muraguchi, D. O. Natvig, H. Palmerini, M. A. Ramesh, Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 11889- 11894 ,(2010) , 10.1073/PNAS.1003391107
Cristian O. Rohr, Laura N. Levin, Alejandro N. Mentaberry, Sonia A. Wirth, A First Insight into Pycnoporus sanguineus BAFC 2126 Transcriptome PLoS ONE. ,vol. 8, pp. e81033- ,(2013) , 10.1371/JOURNAL.PONE.0081033
T. R. GREEN, Significance of glucose oxidase in lignin degradation Nature. ,vol. 268, pp. 78- 80 ,(1977) , 10.1038/268078A0
Christopher M. Phillips, William T. Beeson, Jamie H. Cate, Michael A. Marletta, Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa ACS Chemical Biology. ,vol. 6, pp. 1399- 1406 ,(2011) , 10.1021/CB200351Y
Christian Geltner, Sieglinde Sorschag, Birgit Willinger, Thomas Jaritz, Zoran Saric, Cornelia Lass-Flörl, Necrotizing mycosis due to Verruconis gallopava in an immunocompetent patient. Infection. ,vol. 43, pp. 743- 746 ,(2015) , 10.1007/S15010-015-0757-Y
Gustav Vaaje-Kolstad, Bjørge Westereng, Svein J. Horn, Zhanliang Liu, Hong Zhai, Morten Sørlie, Vincent G. H. Eijsink, An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. ,vol. 330, pp. 219- 222 ,(2010) , 10.1126/SCIENCE.1192231
Kouta Takeda, Hirotoshi Matsumura, Takuya Ishida, Masahiro Samejima, Hiroyuki Ohno, Makoto Yoshida, Kiyohiko Igarashi, Nobuhumi Nakamura, Characterization of a Novel PQQ-Dependent Quinohemoprotein Pyranose Dehydrogenase from Coprinopsis cinerea Classified into Auxiliary Activities Family 12 in Carbohydrate-Active Enzymes PLOS ONE. ,vol. 10, pp. e0115722- ,(2015) , 10.1371/JOURNAL.PONE.0115722
Michael D. Cameron, Steven D. Aust, Cellobiose dehydrogenase–an extracellular fungal flavocytochrome Enzyme and Microbial Technology. ,vol. 28, pp. 129- 138 ,(2001) , 10.1016/S0141-0229(00)00307-0