An Introduction to Formally Real Jordan Algebras and Their Applications in Optimization

作者: F. Alizadeh

DOI: 10.1007/978-1-4614-0769-0_11

关键词:

摘要: In this chapter we study formally real Jordan algebras and their impact on certain convex optimization problems. We first show how common topics in problems, such as complementarity interior point algorithms, give rise to algebraic questions. Next the basic properties of including multiplication operator, quadratic representation, spectral Peirce decomposition. Finally theory transparently unifies presentation analysis issues degeneracy complementarity, proofs polynomial time convergence methods linear, second order semidefinite

参考文章(57)
Jacques Faraut, Adam Korányi, Analysis on Symmetric Cones ,(1995)
Renato Duarte Carneiro Monteiro, Ilan Adler, Interior path following primal-dual algorithms University of California, Berkeley. ,(1988)
Farid Alizadeh, Stefan Schmieta, Symmetric Cones, Potential Reduction Methods and Word-by-Word Extensions Springer, Boston, MA. pp. 195- 233 ,(2000) , 10.1007/978-1-4615-4381-7_8
M. Overton, F. Alizadeh, J. P. Haeberly, A New Primal-Dual Interior-Point Method for Semidefinite Programming Univ. of Michigan, Ann Arbor, MI (United States). pp. 113- 117 ,(1994)
Leonid Faybusovich, Euclidean Jordan Algebras and Interior-point Algorithms Positivity. ,vol. 1, pp. 331- 357 ,(1997) , 10.1023/A:1009701824047
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
Sebastian Walcher, Aloys Krieg, Max Koecher, The Minnesota Notes on Jordan Algebras and Their Applications ,(1999)
Masakazu Kojima, Susumu Shindoh, Shinji Hara, Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices 日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集. ,vol. 1995, pp. 84- 85 ,(1995)
Roger A Horn, Topics in Matrix Analysis ,(2010)