Order-k Voronoi Diagrams, k-Sections, and k-Sets

作者: Dominique Schmitt , Jean-Claude Spehner

DOI: 10.1007/978-3-540-46515-7_26

关键词:

摘要: In this paper we characterize all-dimensional faces of order-k Voronoi diagrams. First introduce the notion k-section to give a precise definition these faces. Then, unbounded by extending classical k-set. Finally, studying some relations between k-sections, new proof size diagrams in plane.

参考文章(9)
Lee, Silio, An Optimal Illumination Region Algorithm for Convex Polygons IEEE Transactions on Computers. ,vol. 31, pp. 1225- 1227 ,(1982) , 10.1109/TC.1982.1675946
Franz Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data structure ACM Computing Surveys. ,vol. 23, pp. 345- 405 ,(1991) , 10.1145/116873.116880
Michael Ian Shamos, Dan Hoey, Closest-point problems foundations of computer science. pp. 151- 162 ,(1975) , 10.1109/SFCS.1975.8
Franz Aurenhammer, A criterion for the affine equivalence of cell complexes inR d and convex polyhedra inR d+1 Discrete & Computational Geometry. ,vol. 2, pp. 49- 64 ,(1987) , 10.1007/BF02187870
Herbert Edelsbrunner, Raimund Seidel, Voronoi diagrams and arrangements Discrete & Computational Geometry. ,vol. 1, pp. 25- 44 ,(1986) , 10.1007/BF02187681
R.E. Miles, On the homogeneous planar Poisson point process Mathematical Biosciences. ,vol. 6, pp. 85- 127 ,(1970) , 10.1016/0025-5564(70)90061-1
Barry Boots, Kokichi Sugihara, Atsuyuki Okabe, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams ,(1992)
FRANZ AURENHAMMER, OTFRIED SCHWARZKOPF, A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams International Journal of Computational Geometry and Applications. ,vol. 2, pp. 363- 381 ,(1992) , 10.1142/S0218195992000214
Der-Tsai Lee, On k-Nearest Neighbor Voronoi Diagrams in the Plane IEEE Transactions on Computers. ,vol. 31, pp. 478- 487 ,(1982) , 10.1109/TC.1982.1676031