Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis

作者: Elisabeth Pilgerstorfer , Bert Jüttler

DOI: 10.1016/J.CMA.2013.09.019

关键词:

摘要: Abstract Isogeometric Analysis (IGA) was introduced by Hughes et al. (2005) [1] as a new method to bridge the gap between geometry description and numerical analysis. Similar finite element approach, IGA concept solve partial differential equation leads (linear) system of equations. The condition number coefficient matrix is crucial factor for stability system. It depends strongly on domain parameterization, which provides isogeometric discretization. In this paper we derive bound stiffness Poisson equation. particular, investigate influence parameterization knot spacing factors appearing in our reflect properties given parameterization.

参考文章(37)
Jean-Claude Nédélec, Acoustic and electromagnetic equations ,(2001)
M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, A. -V. Vuong, Swept Volume Parameterization for Isogeometric Analysis conference on mathematics of surfaces. ,vol. 5654, pp. 19- 44 ,(2009) , 10.1007/978-3-642-03596-8_2
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Jean-Claude Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems Published in <b>2001</b> in New York NY) by Springer. ,(2001)
J. Z. Zhu, O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method: Its Basis and Fundamentals ,(2005)
Wayne Tiller, Les Piegl, The NURBS Book ,(1995)
Larry L. Schumaker, Josef Hoschek, Dieter Lasser, Fundamentals of Computer Aided Geometric Design ,(1996)
T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement Computer Methods in Applied Mechanics and Engineering. ,vol. 194, pp. 4135- 4195 ,(2005) , 10.1016/J.CMA.2004.10.008
T. Takacs, B. Jüttler, Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis Computer Methods in Applied Mechanics and Engineering. ,vol. 200, pp. 3568- 3582 ,(2011) , 10.1016/J.CMA.2011.08.023
K.P.S. Gahalaut, J.K. Kraus, S.K. Tomar, Multigrid methods for isogeometric discretization. Computer Methods in Applied Mechanics and Engineering. ,vol. 253, pp. 413- 425 ,(2013) , 10.1016/J.CMA.2012.08.015