The Twenty-Seven Lines on the Cubic Surface

作者: H. S. M. Coxeter

DOI: 10.1007/978-3-0348-5858-8_5

关键词:

摘要: Instead of attempting to prove that the general cubic surface contains 27 lines, I refer reader an excellent account in treatise Miller, Blichfeldt and Dickson [1916, pp. 343–344]. The early history this famous arrangement lines is described Section 2. Here am indebted L. Kollros, who edited collected works Schlafli [1858, p. 216]. make consistent use Schlafli’s “epoch-making” notation, even though it has disadvantage specializing one 36 double sixes. A completely symmetrical which number arises as 33 instead 12 + 15, was devised by Philip Hall [see Coxeter 1930, 396], improved Frame [1938, 660] perfected Beniamino Segre [1942, 3; see also 1974, 119].

参考文章(20)
Emanuel Lodewijk Elte, The semiregular polytopes of the hyperspaces 001274235. ,(1912)
H. S. M. Coxeter, Twelve Geometric Essays ,(1968)
H. S. M. Coxeter, Regular Complex Polytopes ,(1991)
George David Birkhoff, Collected mathematical papers Dover Publications. ,(1968)
William S. Burnside, Theory of Groups of Finite Order ,(1955)
Élie Cartan, La géométrie des groupes simples Annali di Matematica Pura ed Applicata. ,vol. 4, pp. 209- 256 ,(1927) , 10.1007/BF02409989
Geiser, Ueber die Doppeltangenten einer ebenen Curve vierten Grades Mathematische Annalen. ,vol. 1, pp. 129- 138 ,(1869) , 10.1007/BF01447389
H. F. Blichfeldt, G. A. Miller, Leonard E. Dickson, Theory and applications of finite groups ,(1916)