Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods

作者: Peng Guo , Nan Bai

DOI: 10.3390/EN4112077

关键词:

摘要: Condition Monitoring (CM) of wind turbines can greatly reduce the maintenance costs for farms, especially offshore farms. A new condition monitoring method a turbine gearbox using temperature trend analysis is proposed. Autoassociative Kernel Regression (AAKR) used to construct normal behavior model temperature. With proper construction memory matrix, AAKR cover working space gearbox. When has an incipient failure, residuals between estimates and measurement will become significant. moving window statistical detect changes residual mean value standard deviation in timely manner. one these parameters exceeds predefined thresholds, failure flagged. In order simulate fault, manual drift added initial Supervisory Control Data Acquisitions (SCADA) data. Analysis simulated failures shows that effective.

参考文章(14)
P.J. Tavner, Y. Feng, C.J. Crabtree, H. Long, Y. Qiu, Use of SCADA and CMS signals for failure detection and diagnosis of a wind turbine gearbox ,(2011)
F. K. Bockhorst, S. W. Wegerich, J. P. Herzog, K. C. Gross, MSET modeling of Crystal River-3 venturi flow meters. 6th International Conference on Nuclear Engineering, San Diego, CA (US), 05/10/1998--05/15/1998. ,(1998)
Mari Cruz Garcia, Miguel A. Sanz-Bobi, Javier del Pico, SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a windturbine gearbox Computers in Industry. ,vol. 57, pp. 552- 568 ,(2006) , 10.1016/J.COMPIND.2006.02.011
W. Yang, P.J. Tavner, M.R. Wilkinson, Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train Iet Renewable Power Generation. ,vol. 3, pp. 1- 11 ,(2009) , 10.1049/IET-RPG:20080006
Y. Amirat, M.E.H. Benbouzid, E. Al-Ahmar, B. Bensaker, S. Turri, A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems Renewable & Sustainable Energy Reviews. ,vol. 13, pp. 2629- 2636 ,(2009) , 10.1016/J.RSER.2009.06.031
Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, C.K. Song, Condition monitoring and fault detection of wind turbines and related algorithms: A review Renewable & Sustainable Energy Reviews. ,vol. 13, pp. 1- 39 ,(2009) , 10.1016/J.RSER.2007.05.008
Peng Guo, David Infield, Xiyun Yang, Wind Turbine Generator Condition-Monitoring Using Temperature Trend Analysis IEEE Transactions on Sustainable Energy. ,vol. 3, pp. 124- 133 ,(2012) , 10.1109/TSTE.2011.2163430
J. Wesley Hines, Dustin Garvey, Process and equipment monitoring methodologies applied to sensor calibration monitoring Quality and Reliability Engineering International. ,vol. 23, pp. 123- 135 ,(2007) , 10.1002/QRE.818
Michael R. Wilkinson, Fabio Spinato, Peter J. Tavner, Condition Monitoring of Generators & Other Subassemblies in Wind Turbine Drive Trains ieee international symposium on diagnostics for electric machines, power electronics and drives. pp. 388- 392 ,(2007) , 10.1109/DEMPED.2007.4393125
Wenxian Yang, P.J. Tavner, C.J. Crabtree, M. Wilkinson, Cost-Effective Condition Monitoring for Wind Turbines IEEE Transactions on Industrial Electronics. ,vol. 57, pp. 263- 271 ,(2010) , 10.1109/TIE.2009.2032202