Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

作者: Jan-Maarten A. Geertman , Antonius J.A. van Maris , Johannes P. van Dijken , Jack T. Pronk

DOI: 10.1016/J.YMBEN.2006.06.004

关键词:

摘要: Abstract Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical yield of 1 mol·(mol glucose)−1 due the introduction rigid carbon, ATP or redox stoichiometries. In present study, we sought circumvent these constraints (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with formation cytosolic NADH (iii) enabling oxidative catabolism within mitochondrial matrix. aerobic, glucose-grown batch cultures S. strain, in which pyruvate decarboxylases external dehydrogenases respiratory chain-linked glycerol-3-phosphate dehydrogenase deleted this purpose, produced 0.90 mol·(mol glucose)−1. aerobic glucose-limited chemostat cultures, was ca. 25% lower, suggesting involvement an alternative glucose-sensitive mechanism oxidation NADH. Nevertheless, vivo generation additional co-feeding formate increased on glucose 1.08 mol mol−1. To our knowledge, is highest reported cerevisiae.

参考文章(67)
Piet Borst, Hydrogen transport and transport metabolites Springer, Berlin, Heidelberg. pp. 137- 162 ,(1963) , 10.1007/978-3-642-86784-2_10
John Stuart Harrison, Anthony H. Rose, Metabolism and physiology of yeasts ,(1989)
Armin Fiechter, Wolfgang Seghezzi, Regulation of glucose metabolism in growing yeast cells Journal of Biotechnology. ,vol. 27, pp. 27- 45 ,(1992) , 10.1016/0168-1656(92)90028-8
K.I. Minard, L McAlister-Henn, Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast Journal of Biological Chemistry. ,vol. 267, pp. 17458- 17464 ,(1992) , 10.1016/S0021-9258(18)41948-5
Kaup B, Sahm H, Bringer-Meyer S, Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Communications in agricultural and applied biological sciences. ,vol. 68, pp. 235- 238 ,(2003)
Hans-Jrgen Rehm, Microbial Production of Glycerol and Other Polyols Biotechnology. pp. 205- 227 ,(2001) , 10.1002/9783527620883.CH5
Anthony H. Rose, Energy-Yielding Metabolism Chemical Microbiology (Third Edition)#R##N#An Introduction to Microbial Physiology. pp. 120- 161 ,(1968) , 10.1007/978-1-4899-6567-7_6
S. Cavero, A. Vozza, A. Del Arco, L. Palmieri, A. Villa, E. Blanco, M. J. Runswick, J. E. Walker, S. Cerdán, F. Palmieri, J. Satrústegui, Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae. Molecular Microbiology. ,vol. 50, pp. 1257- 1269 ,(2003) , 10.1046/J.1365-2958.2003.03742.X
Zhengxiang Wang, Jian Zhuge, Huiying Fang, Bernard A Prior, Glycerol production by microbial fermentation: A review Biotechnology Advances. ,vol. 19, pp. 201- 223 ,(2001) , 10.1016/S0734-9750(01)00060-X
W. Curtis Small, Lee McAlister-Henn, Identification of a Cytosolically Directed NADH Dehydrogenase in Mitochondria of Saccharomyces cerevisiae Journal of Bacteriology. ,vol. 180, pp. 4051- 4055 ,(1998) , 10.1128/JB.180.16.4051-4055.1998