Combining structured and unstructured data for predictive models: a deep learning approach

作者: Dongdong Zhang , Changchang Yin , Jucheng Zeng , Xiaohui Yuan , Ping Zhang

DOI: 10.1101/2020.08.10.20172122

关键词:

摘要: Background: The broad adoption of Electronic Health Records (EHRs) provides great opportunities to conduct health care research and solve various clinical problems in medicine. With recent advances success, methods based on machine learning deep have become increasingly popular medical informatics. However, while many studies utilize temporal structured data predictive modeling, they typically neglect potentially valuable information unstructured notes. Integrating heterogeneous types across EHRs through techniques may help improve the performance prediction models. Methods: In this research, we proposed 2 general-purpose multi-modal neural network architectures enhance patient representation by combining sequential notes with data. fusion models leverage document embeddings for long note documents either convolutional or short-term memory networks model signals, one-hot encoding static representation. concatenated is final which used make predictions. Results: We evaluate 3 risk tasks (i.e., in-hospital mortality, 30-day hospital readmission, length stay prediction) using derived from publicly available Medical Information Mart Intensive Care III dataset. Our results show that data, outperform other only. Conclusions: learn better helps reduce errors.

参考文章(31)
Radim Řehůřek, Petr Sojka, Software Framework for Topic Modelling with Large Corpora University of Malta. ,(2010)
Vincent Liu, Patricia Kipnis, Michael K. Gould, Gabriel J. Escobar, Length of Stay Predictions Medical Care. ,vol. 48, pp. 739- 744 ,(2010) , 10.1097/MLR.0B013E3181E359F3
Anja Brunberg, Jan Spillner, Rüdiger Autschbach, Dirk Abel, Simulation physiologischer Regelkreise mit der objektorientierten Modellbibliothek “HumanLib” At-automatisierungstechnik. ,vol. 59, pp. 649- 655 ,(2011) , 10.1524/AUTO.2011.0951
Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad, Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission knowledge discovery and data mining. pp. 1721- 1730 ,(2015) , 10.1145/2783258.2788613
Jack E. Zimmerman, Andrew A. Kramer, Douglas S. McNair, Fern M. Malila, Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical Care Medicine. ,vol. 34, pp. 1297- 1310 ,(2006) , 10.1097/01.CCM.0000215112.84523.F0
Magali Bisbal, Elisabeth Jouve, Laurent Papazian, Sophie de Bourmont, Gilles Perrin, Beatrice Eon, Marc Gainnier, Effectiveness of SAPS III to predict hospital mortality for post-cardiac arrest patients Resuscitation. ,vol. 85, pp. 939- 944 ,(2014) , 10.1016/J.RESUSCITATION.2014.03.302
Devan Kansagara, Honora Englander, Amanda Salanitro, David Kagen, Cecelia Theobald, Michele Freeman, Sunil Kripalani, Risk Prediction Models for Hospital Readmission: A Systematic Review JAMA. ,vol. 306, pp. 1688- 1698 ,(2011) , 10.1001/JAMA.2011.1515
Li Deng, Geoffrey Hinton, Brian Kingsbury, New types of deep neural network learning for speech recognition and related applications: an overview international conference on acoustics, speech, and signal processing. pp. 8599- 8603 ,(2013) , 10.1109/ICASSP.2013.6639344
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)
Jacques Donzé, Drahomir Aujesky, Deborah Williams, Jeffrey L. Schnipper, Potentially Avoidable 30-Day Hospital Readmissions in Medical Patients Derivation and Validation of a Prediction Model JAMA Internal Medicine. ,vol. 173, pp. 632- 638 ,(2013) , 10.1001/JAMAINTERNMED.2013.3023