Hydrodynamic instability of ablation fronts in inertial confinement fusion

作者: A. R. Piriz

DOI: 10.1063/1.1344194

关键词:

摘要: An analytical model for the Rayleigh–Taylor instability of an ablation front is developed by decoupling analysis from corona physics. Thus, validity resulting dispersion relation not limited a particular approximation unperturbed profiles. In consequence, it turns out to be suitable calculating growth rate using profiles obtained one-dimensional simulations. The applies regime with large and intermediate Froude numbers, which Fr⩾10−2. However, well behaved also Fr⩽10−2, allowing its application situations arbitrary numbers. Besides, shows relevance stabilizing effects lateral transport mass momentum.

参考文章(15)
G.I. Barenblatt, Ia.B. Zeldovich, G.M. Makhviladze, V.B. Librovich, The Mathematical Theory of Combustion and Explosions ,(1985)
R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, C. P. Verdon, Self‐consistent stability analysis of ablation fronts in inertial confinement fusion Physics of Plasmas. ,vol. 3, pp. 2122- 2128 ,(1996) , 10.1063/1.871664
R. Betti, V. N. Goncharov, R. L. McCrory, C. P. Verdon, Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion Physics of Plasmas. ,vol. 5, pp. 1446- 1454 ,(1998) , 10.1063/1.872802
H. Takabe, K. Mima, L. Montierth, R. L. Morse, Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma Physics of Fluids. ,vol. 28, pp. 3676- 3682 ,(1985) , 10.1063/1.865099
A. R. Piriz, J. Sanz, L. F. Ibañez, Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited Physics of Plasmas. ,vol. 4, pp. 1117- 1126 ,(1997) , 10.1063/1.872200
Stephen E. Bodner, Rayleigh-Taylor Instability and Laser-Pellet Fusion Physical Review Letters. ,vol. 33, pp. 761- 764 ,(1974) , 10.1103/PHYSREVLETT.33.761
H. J. Kull, Incompressible description of Rayleigh–Taylor instabilities in laser‐ablated plasmas Physics of fluids. B, Plasma physics. ,vol. 1, pp. 170- 182 ,(1989) , 10.1063/1.859084
R. Betti, V. N. Goncharov, R. L. McCrory, C. P. Verdon, Self-consistent cutoff wave number of the ablative Rayleigh-Taylor instability Physics of Plasmas. ,vol. 2, pp. 3844- 3851 ,(1995) , 10.1063/1.871083
F. S. Felber, Steady-state model of a flat laser-driven target Physical Review Letters. ,vol. 39, pp. 84- 87 ,(1977) , 10.1103/PHYSREVLETT.39.84