Freedom in small parameter expansion for nonlinear perturbations

作者:

DOI: 10.1098/RSPA.1993.0132

关键词:

摘要: The freedom of choice the zero-order term in perturbative analysis harmonic oscillators that are perturbed by a nonlinear perturbation is investigated detail within framework method normal forms case unforced Duffing oscillator. It demonstrated leading to minimal (MNF) far best, indicating MNF may be way significantly improve convergence properties series relative traditional expansions.

参考文章(22)
Gen-ichiro Hori, Theory of general perturbations with unspecified canonical variables Publications of the Astronomical Society of Japan. ,vol. 18, pp. 287- 296 ,(1966)
Dieter Armbruster, Richard H. Rand, Perturbation Methods, Bifurcation Theory and Computer Algebra ,(1987)
M. Kummer, HOW TO AVOID SECULAR TERMS IN CLASSICAL AND QUANTUM MECHANICS. Il Nuovo Cimento B. ,vol. 1, pp. 123- 148 ,(1971) , 10.1007/BF02815272
R.H.G. Helleman, E.W. Montroll, On a nonlinear perturbation theory without secular terms: I. Classical coupled anharmonic oscillators Physica D: Nonlinear Phenomena. ,vol. 74, pp. 22- 74 ,(1974) , 10.1016/0031-8914(74)90183-9
Genichiro Hori, Theory of General Perturbations for Non-Canonical Systems Publications of the Astronomical Society of Japan. ,vol. 23, pp. 567- 587 ,(1971)
Alex J. Dragt, John M. Finn, Lie Series and Invariant Functions for Analytic Symplectic Maps Journal of Mathematical Physics. ,vol. 17, pp. 2215- 2227 ,(1976) , 10.1063/1.522868
Ahmed Aly Kamel, Perturbation method in the theory of nonlinear oscillations Celestial Mechanics and Dynamical Astronomy. ,vol. 3, pp. 90- 106 ,(1970) , 10.1007/BF01230435