Quantum cosmology with a curvature squared action

作者: A. K. Sanyal , B. Modak

DOI: 10.1103/PHYSREVD.63.064021

关键词:

摘要: The correct quantum description for a curvature squared term in the action can be obtained by casting canonical form with introduction of variable which is negative first derivative field appearing action, only after removing total terms from action. We present Wheeler-DeWitt equation and obtain expression probability density current continuity. Furthermore, weak energy limit we classical Einstein equation. Finally solution wave

参考文章(13)
J. B. Hartle, S. W. Hawking, Wave function of the Universe Physical Review D. ,vol. 28, pp. 2960- 2975 ,(1983) , 10.1103/PHYSREVD.28.2960
Jonathan J. Halliwell, James B. Hartle, Integration contours for the no-boundary wave function of the universe Physical Review D. ,vol. 41, pp. 1815- 1834 ,(1990) , 10.1103/PHYSREVD.41.1815
G.W. Gibbons, S.W. Hawking, M.J. Perry, Path integrals and the indefiniteness of the gravitational action Nuclear Physics B. ,vol. 138, pp. 141- 150 ,(1978) , 10.1016/0550-3213(78)90161-X
A.A. Starobinsky, A new type of isotropic cosmological models without singularity Physics Letters B. ,vol. 91, pp. 99- 102 ,(1980) , 10.1016/0370-2693(80)90670-X
A A Starobinsky, H -J Schmidt, On a general vacuum solution of fourth-order gravity Classical and Quantum Gravity. ,vol. 4, pp. 695- 702 ,(1987) , 10.1088/0264-9381/4/3/026
Gary T. Horowitz, Quantum Cosmology With a Positive Definite Action Physical Review D. ,vol. 31, pp. 1169- 1177 ,(1985) , 10.1103/PHYSREVD.31.1169
S.W. Hawking, J.C. Luttrell, Higher derivatives in quantum cosmology: (I). The isotropic case Nuclear Physics. ,vol. 247, pp. 250- 260 ,(1984) , 10.1016/0550-3213(84)90380-8