Stochastic transition in two-dimensional Lennard-Jones systems

作者: Giancarlo Benettin , Guido Lo Vecchio , Alexander Tenenbaum

DOI: 10.1103/PHYSREVA.22.1709

关键词:

摘要: We study by computer simulation the behavior at low energy of two-dimensional Lennard-Jones systems, with square or triangular cells and a number degrees freedom $N$ up to 128. These systems exhibit transition from ordered stochastic motions, passing through region intermediate behavior. thus find two stochasticity borders, which separate in phase space ordered, intermediate, regions. The corresponding thresholds have been determined as functions frequency $\ensuremath{\omega}$ initially excited normal modes; they generally increase appear be independent $N$. Their values agree those found other authors for one-dimensional LJ systems. computed also maximal Lyapunov characteristic exponent ${\ensuremath{\chi}}^{*}$ our is typical measure stochasticity; this analysis shows that even certain features may persist. At higher energies, increases linearly per degree $e$. law ${\ensuremath{\chi}}^{*}(e)$ has thermodynamic limit extrapolation. fall physically significant range. function compatible hypothesis on existence classical zero-point energy, advanced Cercignani, Galgani, Scotti.

参考文章(13)
L. Galgani, A. Scotti, Recent progress in classical nonlinear dynamics Rivista Del Nuovo Cimento. ,vol. 2, pp. 189- 209 ,(1972) , 10.1007/BF02747780
P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, Anharmonic Chain with Lennard-Jones Interaction Physical Review A. ,vol. 2, pp. 2013- 2019 ,(1970) , 10.1103/PHYSREVA.2.2013
B.V. Chirikov, F.M. Izrailev, V.A. Tayursky, Numerical experiments on the statistical behaviour of dynamical systems with a few degrees of freedom Computer Physics Communications. ,vol. 5, pp. 11- 16 ,(1973) , 10.1016/0010-4655(73)90003-9
M. Casartelli, E. Diana, L. Galgani, A. Scotti, Numerical computations on a stochastic parameter related to the Kolmogorov entropy Physical Review A. ,vol. 13, pp. 1921- 1925 ,(1976) , 10.1103/PHYSREVA.13.1921
E. Diana, L. Galgani, G. Casartelli, G. Casati, A. Scotti, Stochastic transition in a classical nonlinear dynamical system: A Lennard-Jones chain Theoretical and Mathematical Physics. ,vol. 29, pp. 1022- 1027 ,(1976) , 10.1007/BF01108505
M. C. Carotta, C. Ferrario, G. Lo Vecchio, L. Galgani, New phenomenon in the stochastic transition of coupled oscillators Physical Review A. ,vol. 17, pp. 786- 794 ,(1978) , 10.1103/PHYSREVA.17.786
L. Galgani, G. Lo Vecchio, Stochasticity thresholds for systems of coupled oscillators Il Nuovo Cimento B. ,vol. 52, pp. 1- 14 ,(1979) , 10.1007/BF02743565
Hajime Hirooka, Nobuhiko Saitô, Computer Studies on the Approach to Thermal Equilibrium in Coupled Anharmonic Oscillators. I. Two Dimensional Case Journal of the Physical Society of Japan. ,vol. 26, pp. 624- 630 ,(1969) , 10.1143/JPSJ.26.624
P. Bocchieri, F. Valz-Gris, Ergodic properties of an anharmonic two-dimensional crystal Physical Review A. ,vol. 9, pp. 1252- 1256 ,(1974) , 10.1103/PHYSREVA.9.1252
C. Cercignani, L. Galgani, A. Scotti, Zero-point energy in classical non-linear mechanics☆ Physics Letters A. ,vol. 38, pp. 403- 404 ,(1972) , 10.1016/0375-9601(72)90225-3