Reservoir Computing Beyond Memory-Nonlinearity Trade-off.

作者: Masanobu Inubushi , Kazuyuki Yoshimura

DOI: 10.1038/S41598-017-10257-6

关键词:

摘要: … Reservoir computing is a brain-inspired machine learning … a working principle in reservoir computing can be expected to … , we propose a mixture reservoir endowed with both linear and …

参考文章(37)
Wolfgang Maass, Thomas Natschläger, Henry Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations Neural Computation. ,vol. 14, pp. 2531- 2560 ,(2002) , 10.1162/089976602760407955
David Verstraeten, Joni Dambre, Xavier Dutoit, Benjamin Schrauwen, Memory versus non-linearity in reservoirs The 2010 International Joint Conference on Neural Networks (IJCNN). pp. 1- 8 ,(2010) , 10.1109/IJCNN.2010.5596492
S. Ganguli, D. Huh, H. Sompolinsky, Memory traces in dynamical systems Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 18970- 18975 ,(2008) , 10.1073/PNAS.0804451105
Taro Toyoizumi, Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons Neural Computation. ,vol. 24, pp. 2678- 2699 ,(2012) , 10.1162/NECO_A_00324
Yvan Paquot, Francois Duport, Joni Dambre, Marc Haelterman, Serge Massar, Antoneo Smerieri, Benjamin Schrauwen, Optoelectronic reservoir computing. Scientific Reports. ,vol. 2, pp. 287- 287 ,(2012) , 10.1038/SREP00287
A Rodan, P Tino, Minimum Complexity Echo State Network IEEE Transactions on Neural Networks. ,vol. 22, pp. 131- 144 ,(2011) , 10.1109/TNN.2010.2089641
Kohei Nakajima, Helmut Hauser, Tao Li, Rolf Pfeifer, Information processing via physical soft body Scientific Reports. ,vol. 5, pp. 10487- 10487 ,(2015) , 10.1038/SREP10487
Kohei Nakajima, Keisuke Fujii, Harnessing disordered quantum dynamics for machine learning arXiv: Quantum Physics. ,(2016) , 10.1103/PHYSREVAPPLIED.8.024030
Peter Haycock, David Verstraeten, John B. Butcher, Benjamin Schrauwen, Charles Day, Extending reservoir computing with random static projections: a hybrid between extreme learning and RC the european symposium on artificial neural networks. pp. 303- 308 ,(2010)