The representation of importance and interaction of features by fuzzy measures

作者: Michel Grabisch

DOI: 10.1016/0167-8655(96)00020-7

关键词:

摘要: We present a new technique for pattern recognition by fuzzy integral, and show how to estimate importance of features, their interaction. Reciprocally, it is shown use expert information about interaction features improve recognition.

参考文章(9)
Michel Grabisch, Hung T Nguyen, Elbert A Walker, Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference ,(1994)
Ioannis Kapouleas, Sholom M. Weiss, An empirical comparison of pattern recognition, neural nets, and machine learning classification methods international joint conference on artificial intelligence. pp. 781- 787 ,(1989)
Lloyd S. Shapley, A Value for n-person Games Contributions to the Theory of Games. pp. 307- 317 ,(1952) , 10.1017/CBO9780511528446.003
M. Grabisch, M. Sugeno, Multi-attribute classification using fuzzy integral [1992 Proceedings] IEEE International Conference on Fuzzy Systems. pp. 47- 54 ,(1992) , 10.1109/FUZZY.1992.258678
Michel Grabisch, Jean-Marie Nicolas, Classification by fuzzy integral: performance and tests computer vision and pattern recognition. ,vol. 65, pp. 255- 271 ,(1994) , 10.1016/0165-0114(94)90023-X
Didier Dubois, Henri Prade, Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms Fuzzy Sets and Systems. ,vol. 10, pp. 15- 20 ,(1983) , 10.1016/S0165-0114(83)80099-2
Michel Grabisch, Fuzzy integral in multicriteria decision making Fuzzy Sets and Systems. ,vol. 69, pp. 279- 298 ,(1995) , 10.1016/0165-0114(94)00174-6
H. Tahani, J.M. Keller, Information fusion in computer vision using the fuzzy integral systems man and cybernetics. ,vol. 20, pp. 733- 741 ,(1990) , 10.1109/21.57289
M. Grabisch, A new algorithm for identifying fuzzy measures and its application to pattern recognition ieee international conference on fuzzy systems. ,vol. 1, pp. 145- 150 ,(1995) , 10.1109/FUZZY.1995.409673