Bifurcation analysis in a predator–prey system with time delay

作者: Yongli Song , Sanling Yuan

DOI: 10.1016/J.NONRWA.2005.03.002

关键词:

摘要: In this paper, a predator–prey system with a discrete delay and a distributed delay is investigated. We first consider the stability of the positive equilibrium and the existence of local Hopf …

参考文章(14)
Y.-H. Wan, Nicholas D. Kazarinoff, B. D. Hassard, Theory and applications of Hopf bifurcation Cambridge University Press. ,(1981)
Xue-zhong He, Stability and Delays in a Predator-Prey System Journal of Mathematical Analysis and Applications. ,vol. 198, pp. 355- 370 ,(1996) , 10.1006/JMAA.1996.0087
H.I. Freedman, S.G. Ruan, Uniform Persistence in Functional Differential Equations Journal of Differential Equations. ,vol. 115, pp. 173- 192 ,(1995) , 10.1006/JDEQ.1995.1011
Alan A. Berryman, The Orgins and Evolution of Predator-Prey Theory Ecology. ,vol. 73, pp. 1530- 1535 ,(1992) , 10.2307/1940005
Tao Zhao, Yang Kuang, H.L. Smith, Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems Nonlinear Analysis-theory Methods & Applications. ,vol. 28, pp. 1373- 1394 ,(1997) , 10.1016/0362-546X(95)00230-S
Wang Wendi, Ma Zhien, Harmless delays for uniform persistence Journal of Mathematical Analysis and Applications. ,vol. 158, pp. 256- 268 ,(1991) , 10.1016/0022-247X(91)90281-4
R. K. Dodd, Periodic orbits arising from Hopf bifurcations in a Volterra prey-predator model Journal of Mathematical Biology. ,vol. 35, pp. 432- 452 ,(1997) , 10.1007/S002850050060
Teresa Faria, Stability and Bifurcation for a Delayed Predator–Prey Model and the Effect of Diffusion☆ Journal of Mathematical Analysis and Applications. ,vol. 254, pp. 433- 463 ,(2001) , 10.1006/JMAA.2000.7182