q-Stirling numbers

作者: Thomas Ernst

DOI: 10.1007/978-3-0348-0431-8_5

关键词:

摘要: In this chapter we focus on functions of q x , or equivalently the q-binomial coefficients. We systematically find q-analogues formulas for Stirling numbers from Jordan and elementary textbooks by J. Cigler Schwatt. To end, various q-difference operators are used. each Sections 5.2–5.4, a certain such △ operator four (the quartet formulas) in section. A q-power sum Carlitz plays special role. present tables recurrence two polynomial q-Stirling numbers.

参考文章(46)
Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming). ,(2005)
J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen. Crelle's Journal. ,vol. 94, pp. 203- 232 ,(1883)
Gian-Carlo Rota, P. Doubilet, Finite operator calculus ,(1975)
W. E. Byrne, Eugene Stephens, The elementary theory of operational mathematics The Mathematical Gazette. ,vol. 12, pp. 201- ,(1938) , 10.2307/3028597
Michael Schlosser, q-Analogues of the sums of consecutive integers, squares, cubes, quarts and quints Electronic Journal of Combinatorics. ,vol. 11, pp. 71- ,(2004) , 10.37236/1824
H. S. Vandiver, numbers of the first order Duke Mathematical Journal. ,vol. 8, pp. 575- 584 ,(1941) , 10.1215/S0012-7094-41-00849-9
Taekyun Kim, Sums of powers of consecutive q-integers arXiv: Number Theory. ,(2005)