Classification of stationary axisymmetric gravitational fields

作者: H. Levy

DOI: 10.1007/BF02710151

关键词:

摘要: A gravitational stress tensor is defined for an arbitrary axisymmetric stationary metric, and the solutions of Weyl, Lewis, Papapetrou, Kerr, Marek Newman, Unti Tamburino are classified by expressing them in a single canonical co-ordinate system.

参考文章(11)
E. T. Newman, A. I. Janis, Note on the Kerr Spinning‐Particle Metric Journal of Mathematical Physics. ,vol. 6, pp. 915- 917 ,(1965) , 10.1063/1.1704350
Rudolf Bach, H. Wevl, Neue Lösungen der Einsteinschen Gravitationsgleichungen Mathematische Zeitschrift. ,vol. 13, pp. 134- 145 ,(1922) , 10.1007/BF01485284
Eugene Guth, Unified Hamiltonian theory of relativistic particle equations Annals of Physics. ,vol. 20, pp. 309- 335 ,(1962) , 10.1016/0003-4916(62)90151-3
Some special solutions of the equations of axially symmetric gravitational fields Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 136, pp. 176- 192 ,(1932) , 10.1098/RSPA.1932.0073
E. Newman, L. Tamburino, T. Unti, Empty‐Space Generalization of the Schwarzschild Metric Journal of Mathematical Physics. ,vol. 4, pp. 915- 923 ,(1963) , 10.1063/1.1704018
R. H. Boyer, T. G. Price, An interpretation of the Kerr metric in general relativity Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 61, pp. 531- 534 ,(1965) , 10.1017/S0305004100004096
A. Papapetrou, Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie Annalen der Physik. ,vol. 447, pp. 309- 315 ,(1953) , 10.1002/ANDP.19534470412
W. J. van Stockum, IX.—The Gravitational Field of a Distribution of Particles Rotating about an Axis of Symmetry Proceedings of the Royal Society of Edinburgh. ,vol. 57, pp. 135- 154 ,(1938) , 10.1017/S0370164600013699
van Stockum, Willem Jacob, The gravitational feild of a distribution of particles rotating about an axis of symmetry Proc.Roy.Soc.Edinburgh. ,vol. 57, pp. 135- 154 ,(1937)