Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity

作者: Andrew Comech , Nabile Boussaid

DOI:

关键词:

摘要: We study the point spectrum of linearization at a solitary wave solution $\phi_\omega(x)e^{-\mathrm{i}\omega t}$ to nonlinear Dirac equation in $\mathbb{R}^n$, $n\ge 1$, with term given by $f(\psi^*\beta\psi)\beta\psi$ (known as Soler model). focus on spectral stability, that is, absence eigenvalues nonzero real part, non-relativistic limit $\omega\lesssim m$, case when $f\in C^1(\mathbb{R}\setminus\{0\})$, $f(\tau)=|\tau|^k+O(|\tau|^K)$ for $\tau\to 0$, $0 4/n$. An important part stability analysis is proof bifurcations nonzero-real-part from embedded threshold points $\pm 2m\mathrm{i}$. Our approach based constructing new family exact bi-frequency solutions model, using this determine multiplicity 2\omega\mathrm{i}$ linearized operator, and behaviour "nonlinear eigenvalues" (characteristic roots holomorphic operator-valued functions).

参考文章(76)
Reinhard Mennicken, Manfred Möller, Non-self-adjoint boundary eigenvalue problems ,(2003)
E.A. Kopylova, Dispersion estimates for 2D Dirac equation Asymptotic Analysis. ,vol. 84, pp. 35- 46 ,(2013) , 10.3233/ASY-131166
Arne Jensen, Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions Duke Mathematical Journal. ,vol. 46, pp. 583- 611 ,(1979) , 10.1215/S0012-7094-79-04631-3
Tetsu Mizumachi, Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential Journal of Mathematics of Kyoto University. ,vol. 47, pp. 599- 620 ,(2007) , 10.1215/KJM/1250281026
Dmitry Pelinovsky, Survey on global existence in the nonlinear Dirac equations in one spatial dimension (Harmonic Analysis and Nonlinear Partial Differential Equations) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu. ,vol. 26, pp. 37- 50 ,(2011)
Andres Contreras, Dmitry E. Pelinovsky, Yusuke Shimabukuro, L2 orbital stability of Dirac solitons in the massive Thirring model Communications in Partial Differential Equations. ,vol. 41, pp. 227- 255 ,(2016) , 10.1080/03605302.2015.1123272
J. Krieger, W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension Journal of the American Mathematical Society. ,vol. 19, pp. 815- 920 ,(2006) , 10.1090/S0894-0347-06-00524-8
Stephen Gustafson, Kenji Nakanishi, Tai-Peng Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves International Mathematics Research Notices. ,vol. 2004, pp. 3559- 3584 ,(2004) , 10.1155/S1073792804132340
Tai-Peng Tsai, Horng-Tzer Yau, Relaxation of excited states in nonlinear Schrödinger equations International Mathematics Research Notices. ,vol. 2002, pp. 1629- 1673 ,(2002) , 10.1155/S1073792802201063