On Wrapping Spheres and Cubes with Rectangular Paper

作者: Alex Cole , Erik D. Demaine , Eli Fox-Epstein

DOI: 10.1007/978-3-319-13287-7_4

关键词:

摘要: What is the largest cube or sphere that a given rectangular piece of paper can wrap? This natural problem, which has plagued gift-wrappers everywhere, remains very much unsolved. Here we introduce new upper and lower bounds consolidate previous results. Though these rarely match, our results significantly reduce gap.

参考文章(10)
Erik D. Demaine, Joseph O'Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra ,(2007)
J. AKIYAMA, T. OOYA, Y. SEGAWA, Wrapping a Cube Teaching Mathematics and Its Applications. ,vol. 16, pp. 95- 100 ,(1997) , 10.1093/TEAMAT/16.3.95
P. W. Fowler, T. Tarnai, Transition from circle packing to covering on a sphere: the odd case of 13 circles Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 455, pp. 4131- 4143 ,(1999) , 10.1098/RSPA.1999.0494
Jin Akiyama, Koichi Hirata, Midori Kobayashi, Gisaku Nakamura, Convex developments of a regular tetrahedron Computational Geometry: Theory and Applications. ,vol. 34, pp. 2- 10 ,(2006) , 10.1016/J.COMGEO.2005.07.003
Erik D. Demaine, Martin L. Demaine, John Iacono, Stefan Langerman, Wrapping spheres with flat paper Computational Geometry. ,vol. 42, pp. 748- 757 ,(2009) , 10.1016/J.COMGEO.2008.10.006
Michael L. Catalano-Johnson, Daniel Loeb, John Beebee, A Cubical Gift: 10716 American Mathematical Monthly. ,vol. 108, pp. 81- 82 ,(2001) , 10.2307/2695694
Timothy G. Abbott, Zachary Abel, David Charlton, Erik D. Demaine, Martin L. Demaine, Scott Duke Kominers, Hinged Dissections Exist Discrete & Computational Geometry. ,vol. 47, pp. 150- 186 ,(2012) , 10.1007/S00454-010-9305-9
T. Tarnai, Zs. Gáspár, Covering a sphere by equal circles, and the rigidity of its graph Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 110, pp. 71- 89 ,(1991) , 10.1017/S0305004100070134
Erik D. Demaine, Martin L. Demaine, Joseph S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami Computational Geometry: Theory and Applications. ,vol. 16, pp. 3- 21 ,(2000) , 10.1016/S0925-7721(99)00056-5
Erik D. Demaine, Joseph ORourke, Geometric Folding Algorithms by Erik D. Demaine Cambridge University Press. ,(2007) , 10.1017/CBO9780511735172