Finite difference scheme for simulating a generalized two-dimensional multi-term time fractional non-Newtonian fluid model

作者: Yanqin Liu , Xiuling Yin , Libo Feng , Hongguang Sun

DOI: 10.1186/S13662-018-1876-4

关键词:

摘要: A finite difference scheme, based upon the Crank–Nicolson is applied to numerical approximation of a two-dimensional time fractional non-Newtonian fluid model. This model not only possesses multi-term derivative, but also contains special operator on spatial derivative. And very important lemma proposed and proved, which plays vital role in proof unconditional stability. The stability convergence scheme are discussed theoretically proved by energy method. Numerical experiments given validate accuracy efficiency results indicate that this effective for simulating generalized diffusion

参考文章(52)
Anatoly A. Alikhanov, A new difference scheme for the time fractional diffusion equation Journal of Computational Physics. ,vol. 280, pp. 424- 438 ,(2015) , 10.1016/J.JCP.2014.09.031
Mohsen Zayernouri, George Em Karniadakis, Fractional spectral collocation method SIAM Journal on Scientific Computing. ,vol. 36, ,(2014) , 10.1137/130933216
Ralf Metzler, Joseph Klafter, Igor M. Sokolov, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended Physical Review E. ,vol. 58, pp. 1621- 1633 ,(1998) , 10.1103/PHYSREVE.58.1621
Varsha Daftardar-Gejji, Sachin Bhalekar, Boundary value problems for multi-term fractional differential equations Journal of Mathematical Analysis and Applications. ,vol. 345, pp. 754- 765 ,(2008) , 10.1016/J.JMAA.2008.04.065
Liancun Zheng, Yaqing Liu, Xinxin Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative Nonlinear Analysis-real World Applications. ,vol. 13, pp. 513- 523 ,(2012) , 10.1016/J.NONRWA.2011.02.016
Yanmin Zhao, Weiping Bu, Jianfei Huang, Da-Yan Liu, Yifa Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations Applied Mathematics and Computation. ,vol. 257, pp. 553- 565 ,(2015) , 10.1016/J.AMC.2015.01.016
Emilia Bazhlekova, Ivan Bazhlekov, Viscoelastic flows with fractional derivative models: Computational approach by convolutional calculus of Dimovski Fractional Calculus and Applied Analysis. ,vol. 17, pp. 954- 976 ,(2014) , 10.2478/S13540-014-0209-X
Bangti Jin, Raytcho Lazarov, Yikan Liu, Zhi Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation Journal of Computational Physics. ,vol. 281, pp. 825- 843 ,(2015) , 10.1016/J.JCP.2014.10.051
Rina Schumer, David A. Benson, Mark M. Meerschaert, Boris Baeumer, Fractal mobile/immobile solute transport Water Resources Research. ,vol. 39, pp. 1296- ,(2003) , 10.1029/2003WR002141
A. H. Bhrawy, E. H. Doha, D. Baleanu, R. M. Hafez, A highly accurate Jacobi collocation algorithm for systems of high‐order linear differential–difference equations with mixed initial conditions Mathematical Methods in The Applied Sciences. ,vol. 38, pp. 3022- 3032 ,(2015) , 10.1002/MMA.3277