The equilibrium states of the free Boson gas

作者: J. T. Lewis , J. V. Pulè

DOI: 10.1007/BF01646022

关键词:

摘要: The generating functional of the cyclic representation canonical commutation relations for equilibrium state free Boson gas is calculated, using a method due to Kac, as thermodynamic limit grand functional. relation work Araki and Woods discussed.

参考文章(9)
Reiko Arima, On general boundary value problem for parabolic equations Journal of Mathematics of Kyoto University. ,vol. 4, pp. 207- 243 ,(1964) , 10.1215/KJM/1250524714
J. Manuceau, A. Verbeure, Quasi-free states of the C.C.R.—Algebra and Bogoliubov transformations Communications in Mathematical Physics. ,vol. 9, pp. 293- 302 ,(1968) , 10.1007/BF01654283
John T. Cannon, Infinite volume limits of the canonical free Bose gas states on the Weyl algebra Communications in Mathematical Physics. ,vol. 29, pp. 89- 104 ,(1973) , 10.1007/BF01645656
Sigeru Mizohata, Reiko Arima, Propriétés asymptotiques des valeurs propres des opérateurs elliptiques auto-adjoints Journal of Mathematics of Kyoto University. ,vol. 4, pp. 245- 254 ,(1964) , 10.1215/KJM/1250524715
H. Araki, E. J. Woods, Representations of the Canonical Commutation Relations Describing a Nonrelativistic Infinite Free Bose Gas Journal of Mathematical Physics. ,vol. 4, pp. 637- 662 ,(1963) , 10.1063/1.1704002
Oliver Penrose, Lars Onsager, Bose-Einstein Condensation and Liquid Helium Physical Review. ,vol. 104, pp. 576- 584 ,(1956) , 10.1103/PHYSREV.104.576
Jan M. Chaiken, Number operators for representations of the canonical commutation relations Communications in Mathematical Physics. ,vol. 8, pp. 164- 184 ,(1968) , 10.1007/BF01645803
H. Araki, Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory Journal of Mathematical Physics. ,vol. 1, pp. 492- 504 ,(1960) , 10.1063/1.1703685
I. E. Segal, Foundations of the theory of dyamical systems of in- finitely many degrees of freedom. II Canadian Journal of Mathematics. ,vol. 13, pp. 1- 18 ,(1961) , 10.4153/CJM-1961-001-7