ECG signal analysis and arrhythmia detection on IoT wearable medical devices

作者: Dimitra Azariadi , Vasileios Tsoutsouras , Sotirios Xydis , Dimitrios Soudris

DOI: 10.1109/MOCAST.2016.7495143

关键词:

摘要: … Implementing the best configurations of the design space exploration, on the Galileo board, we demonstrate that the computational cost is such, that the ECG analysis and classification …

参考文章(7)
Manoel Carlos Ramon, Intel Galileo and Intel Galileo Gen 2 Apress, Berkeley, CA. pp. 1- 33 ,(2014) , 10.1007/978-1-4302-6838-3_1
G.B. Moody, R.G. Mark, The impact of the MIT-BIH Arrhythmia Database IEEE Engineering in Medicine and Biology Magazine. ,vol. 20, pp. 45- 50 ,(2001) , 10.1109/51.932724
P. deChazal, M. O'Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features IEEE Transactions on Biomedical Engineering. ,vol. 51, pp. 1196- 1206 ,(2004) , 10.1109/TBME.2004.827359
Chih-Chung Chang, Chih-Jen Lin, LIBSVM ACM Transactions on Intelligent Systems and Technology. ,vol. 2, pp. 1- 27 ,(2011) , 10.1145/1961189.1961199
L Glass, JM Hausdorff, PC Ivanov, RG Mark, JE Mietus, GB Moody, CK Peng, HE Stanley, PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource for Complex Physiologic Signals Circulation. ,vol. 101, pp. 215- 220 ,(2000) , 10.1161/01.CIR.101.23.E215
Monica Subashini, Durgesh Kumar Ojha, Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. ,vol. 8, pp. 120- 123 ,(2014)