Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China

作者: Xudong Hu , Hongbo Mei , Han Zhang , Yuanyuan Li , Mengdi Li

DOI: 10.1007/S11069-020-04371-4

关键词:

摘要: … In addition, its combination strategy over multiple base-learners is meta-learning rather than the voting method. The typical Stacking framework is comprised of two modules, including …

参考文章(98)
David H. Wolpert, Original Contribution: Stacked generalization Neural Networks. ,vol. 5, pp. 241- 259 ,(1992) , 10.1016/S0893-6080(05)80023-1
Pece V. Gorsevski, M. Kenneth Brown, Kurt Panter, Charles M. Onasch, Anita Simic, Jeffrey Snyder, Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio Landslides. ,vol. 13, pp. 467- 484 ,(2016) , 10.1007/S10346-015-0587-0
Alessandro Trigila, Carla Iadanza, Carlo Esposito, Gabriele Scarascia-Mugnozza, Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy) Geomorphology. ,vol. 249, pp. 119- 136 ,(2015) , 10.1016/J.GEOMORPH.2015.06.001
B Feizizadeh, None, Integrating GIS Based Fuzzy Set Theory in Multicriteria Evaluation Methods for Landslide Susceptibility Mapping International journal of geoinformatics. ,vol. 9, pp. 49- 57 ,(2013)
Mark A. Hall, Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques ,(1999)
Wang LiangJie Wang LiangJie, K Sawada, S Moriguchi, Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy Computers & Geosciences. ,vol. 57, pp. 81- 92 ,(2013) , 10.1016/J.CAGEO.2013.04.006