Scaling Up Evolutionary Programming Algorithms

作者: Xin Yao , Yong Liu

DOI: 10.1007/BFB0040764

关键词:

摘要: Most analytical and experimental results on evolutionary programming (EP) are obtained using low-dimensional problems, e.g., smaller than 50. It is unclear, however, whether the empirical from problems still hold for high-dimensional cases. This paper investigates behaviour of four different EP algorithms large-scale i.e., whose dimension ranges 100 to 300. The classical (CEP) [1, 2], fast (FEP).

参考文章(13)
David Bruce Fogel, Evolving artificial intelligence University of California at San Diego. ,(1992)
Xin Yao, Yong Liu, Fast Evolutionary Programming. Evolutionary Programming. pp. 451- 460 ,(1996)
N. Saravanan, David B. Fogel, Multi-operator Evolutionary Programming: A Preliminary Study on Function Optimization Evolutionary Programming. pp. 215- 222 ,(1997) , 10.1007/BFB0014813
Xin Yao, Guangming Lin, Yong Liu, An Analysis of Evolutionary Algorithms Based on Neighborhood and Step Sizes Evolutionary Programming. pp. 297- 307 ,(1997) , 10.1007/BFB0014820
Xin Yao, An overview of evolutionary computation european conference on machine learning. pp. 442- 459 ,(1993) , 10.1007/3-540-56602-3_163
C. Kappler, Are Evolutionary Algorithms Improved by Large Mutations parallel problem solving from nature. pp. 346- 355 ,(1996) , 10.1007/3-540-61723-X_999
Thomas Bäck, Hans-Paul Schwefel, An overview of evolutionary algorithms for parameter optimization Evolutionary Computation. ,vol. 1, pp. 1- 23 ,(1993) , 10.1162/EVCO.1993.1.1.1
Thomas Back, H-P Schwefel, Evolutionary computation: an overview ieee international conference on evolutionary computation. pp. 20- 29 ,(1996) , 10.1109/ICEC.1996.542329
D.B. Fogel, An introduction to simulated evolutionary optimization IEEE Transactions on Neural Networks. ,vol. 5, pp. 3- 14 ,(1994) , 10.1109/72.265956