Microstructural Evolution in Liquid‐Phase‐Sintered SiC: Part III, Effect of Nitrogen‐Gas Sintering Atmosphere

作者: Angel L. Ortiz , Tania Bhatia , Nitin P. Padture , Giuseppe Pezzotti

DOI: 10.1111/J.1151-2916.2002.TB00361.X

关键词:

摘要: Effects of N 2 sintering atmosphere and the starting SiC powder on microstructural evolution liquid-phase-sintered (LPS) were studied. It was found that, for β-SiC case, there complete suppression β → α phase transformation, which otherwise goes to completion in Ar atmosphere. also that microstructures equiaxed coarsening severely retarded, contrast with Ar-atmosphere case. Chemical analyses specimens sintered revealed presence significant amounts nitrogen, believed reside mostly intergranular phase. argued nitrogen LPS helped stabilize phase, thereby preventing transformation attendant formation elongated grains. To investigate retardation, internal friction measurements performed either or For atmosphere, a remarkable shift grain-boundary sliding relaxation peak toward higher temperatures very high activation energy values observed, possibly due incorporation into structure liquid The highly refractory viscous nature deemed responsible retarding solution-reprecipitation these materials. Parallel experiments using α-SiC powders further reinforce arguments. Thus, processing open possibility tailoring their room-temperature mechanical properties making high-temperature materials are resistant creep.

参考文章(19)
Lewis S. Ramsdell, Studies on silicon carbide American Mineralogist. ,vol. 32, pp. 64- 82 ,(1947)
V. G. Kondakov, M. I. Sokhor, L. I. Fel'Dgun, Transition of Silicon Carbide from the Hexagonal to the Cubic Phase under the Influence of High Pressures and High Temperatures Soviet physics. Doklady. ,vol. 12, pp. 749- ,(1968)
V. V. Pujar, R. P. Jensen, N. P. Padture, Densification of liquid-phase-sintered silicon carbide Journal of Materials Science Letters. ,vol. 19, pp. 1011- 1014 ,(2000) , 10.1023/A:1006753213286
A.L Ortiz, F Sánchez-Bajo, N.P Padture, F.L Cumbrera, F Guiberteau, Quantitative polytype-composition analyses of SiC using X-ray diffraction: a critical comparison between the polymorphic and the Rietveld methods Journal of The European Ceramic Society. ,vol. 21, pp. 1237- 1248 ,(2001) , 10.1016/S0955-2219(00)00332-0
T. Rouxel, M. Huger, J. L. Besson, Rheological properties of Y-Si-Al-O-N glasses — elastic moduli, viscosity and creep Journal of Materials Science. ,vol. 27, pp. 279- 284 ,(1992) , 10.1007/BF02403674
N. W. Jepps, T. F. Page, The 6H→ 3C“Reverse” Transformation in Silicon Carbide Compacts Journal of the American Ceramic Society. ,vol. 64, ,(1981) , 10.1111/J.1151-2916.1981.TB15906.X
Huiwen Xu, Tania Bhatia, Swarnima A. Deshpande, Nitin P. Padture, Angel L. Ortiz, Francisco L. Cumbrera, Microstructural Evolution in Liquid‐Phase‐Sintered SiC: Part I, Effect of Starting Powder Journal of the American Ceramic Society. ,vol. 84, pp. 1578- 1584 ,(2004) , 10.1111/J.1151-2916.2001.TB00880.X
Ronald E Loehman, Preparation and properties of oxynitride glasses Journal of Non-crystalline Solids. ,vol. 56, pp. 123- 134 ,(1983) , 10.1016/0022-3093(83)90457-X