In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking.

作者: Robert Ward , James Anderson , Rick McVenes , Ken Stokes

DOI: 10.1002/JBM.A.30555

关键词:

摘要: Polyether polyurethanes are extremely interesting for use in implantable devices. They are, however, susceptible to autoxidative degradation and stress cracking. One approach improving biostability is replace some of the polyether with polysiloxane. Shore 80A 20% (PS-20) 35% (PS-35) polysiloxane were strained 400% elongation implanted rabbits. Twelve weeks implant showed that both significantly more biostable than their polysiloxane-free controls. After 18 months implant, PS-20 developed localized tensile fractures. PS-35 no sign visual damage. Infrared surface analysis does not allow direct evaluation autoxidation because SiOSi stretch peaks mask bands. Secondary indicators suggest possible very slight surfaces, but enough develop cracks. The controls did show substantial infrared evidence autoxidation. Molecular weights long-term explants negligibly lower. In comparison, control suffered molecular weight loss. Positive negative performed as expected. recommended devices do sustain high fixed loads. dramatically its unmodified analogues chronically © 2006 Wiley Periodicals, Inc. J Biomed Mater Res,

参考文章(10)
Q. H. Zhao, A. K. McNally, K. R. Rubin, M. Renier, Y. Wu, V. Rose-Caprara, J. M. Anderson, A. Hiltner, P. Urbanski, K. Stokes, Human plasma α2-macroglobulin promotes in vitro oxidative stress cracking of pellethane 2363-80A : in vivo and in vitro correlations Journal of Biomedical Materials Research. ,vol. 27, pp. 379- 388 ,(1993) , 10.1002/JBM.820270311
Q. Zhao, M. P. Agger, M. Fitzpatrick, J. M. Anderson, A. Hiltner, K. Stokes, P. Urbanski, Cellular interactions with biomaterials: in vivo cracking of pre-stressed Pellethane 2363-80A. Journal of Biomedical Materials Research. ,vol. 24, pp. 621- 637 ,(1990) , 10.1002/JBM.820240508
Y. Wu, C. Sellitti, J. M. Anderson, A. Hiltner, G. A. Lodoen, C. R. Payet, An FTIR–ATR investigation of in vivo poly(ether urethane) degradation Journal of Applied Polymer Science. ,vol. 46, pp. 201- 211 ,(1992) , 10.1002/APP.1992.070460202
Mike Ebert, Bob Ward, James Anderson, Rick McVenes, Ken Stokes, In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking Journal of Biomedical Materials Research Part A. ,vol. 75, pp. 175- 184 ,(2005) , 10.1002/JBM.A.30396
Y. K. Wu, K. R. Sletten, V. Topolkaraev, G. A. Lodoen, J. M. Anderson, E. Baer, A. Hiltner, Effect of an oxidative environment on the creep compliance of poly(ether urethane urea) Journal of Applied Polymer Science. ,vol. 53, pp. 1037- 1049 ,(1994) , 10.1002/APP.1994.070530806
R. Bonart, X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers Journal of Macromolecular Science, Part B. ,vol. 2, pp. 115- 138 ,(1968) , 10.1080/00222346808212867
Kenneth B. Stokes, Polyether polyurethanes: biostable or not? Journal of Biomaterials Applications. ,vol. 3, pp. 228- 259 ,(1988) , 10.1177/088532828800300205
Mark A. Schubert, Michael J. Wiggins, Kristin M. DeFife, Anne Hiltner, James M. Anderson, Vitamin E as an antioxidant for poly(etherurethane urea) : In vivo studies Journal of Biomedical Materials Research. ,vol. 32, pp. 493- 504 ,(1996) , 10.1002/(SICI)1097-4636(199612)32:4<493::AID-JBM1>3.0.CO;2-M
Ken Stokes, Chapter 10 Biodegradation Cardiovascular Pathology. ,vol. 2, pp. 111- 119 ,(1993) , 10.1016/1054-8807(93)90051-3
Ken Stokes, James Anderson, Rick McVenes, Carolyn McClay, The encapsulation of polyurethane-insulated transvenous cardiac pacemaker leads. Cardiovascular Pathology. ,vol. 4, pp. 163- 171 ,(1995) , 10.1016/1054-8807(95)00023-X