Applying Machine Learning Techniques for Detection of Malicious Code in Network Traffic

作者: Yuval Elovici , Asaf Shabtai , Robert Moskovitch , Gil Tahan , Chanan Glezer

DOI: 10.1007/978-3-540-74565-5_5

关键词:

摘要: … eDare was deployed and tested in a network-security lab with distinct “clean” and “infected” … that eDare’s new eThreat detection module should be designed in a flexible, plug-in mode …

参考文章(9)
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
Jeremy Z. Kolter, Marcus A. Maloof, Learning to detect malicious executables in the wild knowledge discovery and data mining. pp. 470- 478 ,(2004) , 10.1145/1014052.1014105
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
J. Ross Quinlan, C4.5: Programs for Machine Learning ,(1992)
Judea Pearl, Fusion, propagation, and structuring in belief networks Artificial Intelligence. ,vol. 29, pp. 241- 288 ,(1986) , 10.1016/0004-3702(86)90072-X
M.G. Schultz, E. Eskin, F. Zadok, S.J. Stolfo, Data mining methods for detection of new malicious executables ieee symposium on security and privacy. pp. 38- 49 ,(2001) , 10.1109/SECPRI.2001.924286
T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan, N-gram-based detection of new malicious code computer software and applications conference. ,vol. 2, pp. 41- 42 ,(2004) , 10.1109/CMPSAC.2004.1342667