Quantum-classical correspondence on associated vector bundles over locally symmetric spaces

作者: Benjamin Küster , Tobias Weich

DOI:

关键词:

摘要: For a compact Riemannian locally symmetric space $\mathcal M$ of rank one and an associated vector bundle $\mathbf V_\tau$ over the unit cosphere $S^\ast\mathcal M$, we give precise description those classical (Pollicott-Ruelle) resonant states on that vanish under covariant derivatives in Anosov-unstable directions chaotic geodesic flow M$. In particular, show they are isomorphically mapped by natural pushforwards into generalized common eigenspaces algebra invariant differential operators $D(G,\sigma)$ compatible bundles W_\sigma$ As consequence this description, obtain exact band structure Pollicott-Ruelle spectrum. Further, some mild assumptions representations $\tau$ $\sigma$ defining W_\sigma$, very explicit eigenspaces. This allows us to relate resonances quantum eigenvalues Laplacian suitable Hilbert sections W_\sigma$. Our methods proof based representation theory Lie theory.

参考文章(22)
Colin Guillarmou, Joachim Hilgert, Tobias Weich, Classical and quantum resonances for hyperbolic surfaces Mathematische Annalen. ,vol. 370, pp. 1231- 1275 ,(2018) , 10.1007/S00208-017-1576-5
Semyon Dyatlov, Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis Annales Scientifiques De L Ecole Normale Superieure. ,vol. 49, pp. 543- 577 ,(2016) , 10.24033/ASENS.2290
Semyon Dyatlov, Colin Guillarmou, Pollicott–Ruelle Resonances for Open Systems Annales Henri Poincaré. ,vol. 17, pp. 3089- 3146 ,(2016) , 10.1007/S00023-016-0491-8
Johannes Sjöstrand, Frédéric Faure, Upper Bound on the Density of Ruelle Resonances for Anosov Flows Communications in Mathematical Physics. ,vol. 308, pp. 325- 364 ,(2011) , 10.1007/S00220-011-1349-Z
Sigurdur Helgason, Groups and geometric analysis ,(1984)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
An Yang, Poisson transforms on vector bundles Transactions of the American Mathematical Society. ,vol. 350, pp. 857- 887 ,(1998) , 10.1090/S0002-9947-98-01659-6
Pierre Y Gaillard, Eigenforms of the Laplacian on real and complex hyperbolic spaces Journal of Functional Analysis. ,vol. 78, pp. 99- 115 ,(1988) , 10.1016/0022-1236(88)90134-6
Martin C. Gutzwiller, Periodic Orbits and Classical Quantization Conditions Journal of Mathematical Physics. ,vol. 12, pp. 343- 358 ,(1971) , 10.1063/1.1665596