A New Sequential Algorithm for Regression Problems by Using Mixture Distribution

作者: Takafumi Kanamori

DOI: 10.1007/3-540-46084-5_87

关键词:

摘要: A newsequen tial method for the regression problems is studied. The suggested motivated by boosting methods in classification problems. Boosting algorithms use weighted data to update estimator. In this paper we construct a sequential estimation from viewpoint of nonparametric using mixture distribution. algorithm uses residuals training data. We compare greedy simple simulation.

参考文章(8)
Harris Drucker, Improving Regressors using Boosting Techniques international conference on machine learning. pp. 107- 115 ,(1997)
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
Gunnar Rätsch, Ayhan Demiriz, Kristin P. Bennett, Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces Machine Learning. ,vol. 48, pp. 189- 218 ,(2002) , 10.1023/A:1013907905629
Jerome H. Friedman, Eric Grosse, Werner Stuetzle, Multidimensional Additive Spline Approximation SIAM Journal on Scientific and Statistical Computing. ,vol. 4, pp. 291- 301 ,(1983) , 10.1137/0904023
Yoav Freund, Robert E Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting conference on learning theory. ,vol. 55, pp. 119- 139 ,(1997) , 10.1006/JCSS.1997.1504
Toniann Pitassi, Richard S. Zemel, A Gradient-Based Boosting Algorithm for Regression Problems neural information processing systems. ,vol. 13, pp. 696- 702 ,(2000)
U. E. Makov, D. M. Titterington, Adrian F. M. Smith, Statistical analysis of finite mixture distributions ,(1986)
Arthur E. Renshaw, D. M. Titterington, A. F. M. Smith, H. E. Makov, Statistical Analysis of Finite Mixture Distributions Journal of the Royal Statistical Society: Series A (General). ,vol. 150, pp. 283- 283 ,(1987) , 10.2307/2981482