Texture and magnetic property evolution of non-oriented Fe-Si steel due to mechanical cutting

作者: Xuesong Xiong , Shubing Hu , Ke Hu , Siqi Zeng

DOI: 10.1016/J.JMMM.2015.10.023

关键词:

摘要: Abstract Microstructures and textures as well magnetic properties of a non-oriented Fe–Si steel with thickness 0.5 mm medium silicon content after mechanical cutting were investigated. The results from electron backscatter diffraction (EBSD) analysis indicated that in the cut edge zone, resulted significant increase low-angle boundaries (LAGBs, 2°≤ θ ≤15°) dislocation densities both upper surface (in shear zone) lower fracture zone). Mechanical also led to visible change textures, such as, intensity decrease λ fiber ( ∥normal direction [ND]) γ ∥ND) components Goss texture ({110} texture) surface. Microstructure changes seem be more obvious than these single sheet testing showed induced an evident deterioration clear hysteresis loop steel, variations became increasing length per mass 0.86 m/kg 2.57 m/kg. largest increment iron loss reached 18.45% 21.76% when flux density was at 1.0 T 1.5 T, respectively. possible main reasons for loops discussed terms factor TF or residual stress.

参考文章(24)
R Rygal, A.J Moses, N Derebasi, J Schneider, A Schoppa, Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels Journal of Magnetism and Magnetic Materials. ,vol. 215-216, pp. 687- 689 ,(2000) , 10.1016/S0304-8853(00)00259-6
A.J Moses, N Derebasi, G Loisos, A Schoppa, Aspects of the cut-edge effect stress on the power loss and flux density distribution in electrical steel sheets Journal of Magnetism and Magnetic Materials. ,vol. 215-216, pp. 690- 692 ,(2000) , 10.1016/S0304-8853(00)00260-2
A Schoppa, J Schneider, C.-D Wuppermann, Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels Journal of Magnetism and Magnetic Materials. pp. 74- 78 ,(2000) , 10.1016/S0304-8853(00)00070-6
R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770MPa hot rolled Nb–Ti microalloyed steel Materials Science and Engineering: A. ,vol. 394, pp. 339- 352 ,(2005) , 10.1016/J.MSEA.2004.11.041
A. Schoppa, J. Schneider, J.-O. Roth, Influence of the cutting process on the magnetic properties of non-oriented electrical steels Journal of Magnetism and Magnetic Materials. ,vol. 215, pp. 100- 102 ,(2000) , 10.1016/S0304-8853(00)00077-9
H.G. Kang, K.M. Lee, M.Y. Huh, J.S. Kim, J.T. Park, O. Engler, Quantification of magnetic flux density in non-oriented electrical steel sheets by analysis of texture components Journal of Magnetism and Magnetic Materials. ,vol. 323, pp. 2248- 2253 ,(2011) , 10.1016/J.JMMM.2011.03.041
Dejan Stojakovic, Roger D. Doherty, Surya R. Kalidindi, Fernando J.G. Landgraf, Thermomechanical Processing for Recovery of Desired \( {\left\langle {001} \right\rangle } \) Fiber Texture in Electric Motor Steels Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 39, pp. 1738- 1746 ,(2008) , 10.1007/S11661-008-9525-2
S. Chen, J. Butler, S. Melzer, Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel Journal of Magnetism and Magnetic Materials. ,vol. 368, pp. 342- 352 ,(2014) , 10.1016/J.JMMM.2014.05.054
A. Iza-Mendia, I. Gutiérrez, Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 561, pp. 40- 51 ,(2013) , 10.1016/J.MSEA.2012.10.012
A. Chaudhury, R. Khatirkar, N.N. Viswanathan, V. Singal, A. Ingle, S. Joshi, I. Samajdar, Low silicon non-grain-oriented electrical steel: Linking magnetic properties with metallurgical factors Journal of Magnetism and Magnetic Materials. ,vol. 313, pp. 21- 28 ,(2007) , 10.1016/J.JMMM.2006.11.217