On varieties of MV-algebras with internal states

作者: A. Di Nola , A. Dvurečenskij , A. Lettieri

DOI: 10.1016/J.IJAR.2010.01.017

关键词:

摘要: In [4,5] the authors introduced variety SMV of MV-algebras with an internal operator, state MV-algebras. [2,3] gave a stronger version MV-algebras, called state-morphism this paper we continue studies presented in just looking at several proper subvarieties SMV, obtained by imposing suitable conditions on behavior operator.

参考文章(16)
Franco Montagna, Tommaso Flaminio, An Algebraic Approach to States on MV-algebras. european society for fuzzy logic and technology conference. pp. 201- 206 ,(2007)
A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung Springer Berlin Heidelberg. ,(1933) , 10.1007/978-3-642-49888-6
Daniele Mundici, Itala M. L. D’Ottaviano, Roberto L. O. Cignoli, Algebraic Foundations of Many-Valued Reasoning ,(2012)
Anatolij Dvurecenskij, Sylvia Pulmannová, New Trends in Quantum Structures ,(2010)
Antonio Di Nola, Ada Lettieri, Equational Characterization of All Varieties of MV-Algebras Journal of Algebra. ,vol. 221, pp. 463- 474 ,(1999) , 10.1006/JABR.1999.7900
Tomáš Kroupa, Every state on semisimple MV-algebra is integral Fuzzy Sets and Systems. ,vol. 157, pp. 2771- 2782 ,(2006) , 10.1016/J.FSS.2006.06.015
G. Georgescu, Bosbach states on fuzzy structures soft computing. ,vol. 8, pp. 217- 230 ,(2004) , 10.1007/S00500-003-0266-2
A. Di Nola, A. Lettieri, CoproductMV-Algebras, Nonstandard Reals, and Riesz Spaces Journal of Algebra. ,vol. 185, pp. 605- 620 ,(1996) , 10.1006/JABR.1996.0342
Jan Kühr, Daniele Mundici, De Finetti theorem and Borel states in [0,1]-valued algebraic logic International Journal of Approximate Reasoning. ,vol. 46, pp. 605- 616 ,(2007) , 10.1016/J.IJAR.2007.02.005