Geometric aspects of noncyclic quantum evolutions.

作者: Arun Kumar Pati

DOI: 10.1103/PHYSREVA.52.2576

关键词:

摘要: … geometrical skeleton to define the geometric phase for the noncyclic evolution of the Schrodinger type. We define a "reference section" of the bundle … we move from one fiber to another, …

参考文章(23)
J. P. Provost, G. Vallee, Riemannian structure on manifolds of quantum states Communications in Mathematical Physics. ,vol. 76, pp. 289- 301 ,(1980) , 10.1007/BF02193559
Joseph Samuel, Rajendra Bhandari, General Setting for Berry's Phase Physical Review Letters. ,vol. 60, pp. 2339- 2342 ,(1988) , 10.1103/PHYSREVLETT.60.2339
ECG Sudarshan, J Anandan, TR Govindarajan, None, A group theoretic treatment of the geometric phase Physics Letters A. ,vol. 164, pp. 133- 137 ,(1992) , 10.1016/0375-9601(92)90691-E
N. Mukunda, R. Simon, Quantum Kinematic Approach to the Geometric Phase. I. General Formalism Annals of Physics. ,vol. 228, pp. 205- 268 ,(1993) , 10.1006/APHY.1993.1093
Arno Bohm, Luis J. Boya, Brian Kendrick, On the uniqueness of the Berry connection Journal of Mathematical Physics. ,vol. 33, pp. 2528- 2532 ,(1992) , 10.1063/1.529571
J. Anandan, A geometric approach to quantum mechanics Foundations of Physics. ,vol. 21, pp. 1265- 1284 ,(1991) , 10.1007/BF00732829
J. Anandan, Y. Aharonov, Geometry of quantum evolution Physical Review Letters. ,vol. 65, pp. 1697- 1700 ,(1990) , 10.1103/PHYSREVLETT.65.1697
Arno Bohm, Luis J. Boya, Brian Kendrick, Derivation of the geometrical phase. Physical Review A. ,vol. 43, pp. 1206- 1210 ,(1991) , 10.1103/PHYSREVA.43.1206