Rigidity of quasiconformal maps on Carnot groups

作者: XIANGDONG XIE

DOI: 10.1017/S0305004116000487

关键词:

摘要: We show that quasiconformal maps on many Carnot groups must be biLipschitz. In particular, this is the case for 2-step with reducible first layer. These results have implications rigidity of quasiisometries between negatively curved solvable Lie groups.

参考文章(14)
Xiangdong Xie, Quasisymmetric homeomorphisms on reducible Carnot groups Pacific Journal of Mathematics. ,vol. 265, pp. 113- 122 ,(2013) , 10.2140/PJM.2013.265.113
Alessandro Ottazzi, A sufficient condition for nonrigidity of Carnot groups Mathematische Zeitschrift. ,vol. 259, pp. 617- 629 ,(2008) , 10.1007/S00209-007-0240-2
Luca Capogna, Michael Cowling, Conformality and $Q$-harmonicity in Carnot groups Duke Mathematical Journal. ,vol. 135, pp. 455- 479 ,(2006) , 10.1215/S0012-7094-06-13532-9
Zoltán M. Balogh, Pekka Koskela, Sari Rogovin, Absolute Continuity of Quasiconformal Mappings on Curves GAFA Geometric And Functional Analysis. ,vol. 17, pp. 645- 664 ,(2007) , 10.1007/S00039-007-0607-X
Ernst Heintze, On homogeneous manifolds of negative curvature Mathematische Annalen. ,vol. 211, pp. 23- 34 ,(1974) , 10.1007/BF01344139
Hans Martin Reimann, Rigidity of H-type groups Mathematische Zeitschrift. ,vol. 237, pp. 697- 726 ,(2001) , 10.1007/PL00004887
Xiangdong Xie, Quasiconformal maps on model Filiform groups arXiv: Complex Variables. ,(2013)
Juha Heinonen, Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry Acta Mathematica. ,vol. 181, pp. 1- 61 ,(1998) , 10.1007/BF02392747
Zoltán M. Balogh, Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group Journal D Analyse Mathematique. ,vol. 83, pp. 289- 312 ,(2001) , 10.1007/BF02790265