The middle-parametric representation of fuzzy numbers and applications to fuzzy interpolation

作者: Alexandru Mihai Bica

DOI: 10.1016/J.IJAR.2015.10.001

关键词:

摘要: In this paper we introduce the middle-parametric representation of a fuzzy number presenting some advantages in use representation. A special attention is focused on subset symmetric numbers properties their arithmetic. The approach sustained by applications these kinds linear programming and presence Gaussian type theory errors. As potential representation, interpolation problems are considered. introduced.The structure investigated.Applications included.

参考文章(44)
S. Abbasbandy, INTERPOLATION OF FUZZY DATA BY COMPLETE SPLINES Korean Journal of Computational & Applied Mathematics. ,vol. 8, pp. 587- 594 ,(2001) , 10.1007/BF02941988
George A. Anastassiou, Fuzzy Mathematics: Approximation Theory ,(2010)
S. Abbasbandy, E. Babolian, Interpolation of fuzzy data by natural splines Korean Journal of Computational & Applied Mathematics. ,vol. 5, pp. 457- 463 ,(1998) , 10.1007/BF03008929
Phil Diamond, Peter Kloeden, Metric Topology of Fuzzy Numbers and Fuzzy Analysis Springer, Boston, MA. pp. 583- 641 ,(2000) , 10.1007/978-1-4615-4429-6_12
Milan Mares, Fuzzy zero, algebraic equivalence: yes or no? Kybernetika. ,vol. 32, pp. 343- 351 ,(1996)
Carlo Bertoluzza, Norberto Corral Blanco, Antonia Salas, On a new class of distances between fuzzy numbers soft computing. ,vol. 2, pp. 71- 84 ,(1995)
A.M Anile, B Falcidieno, G Gallo, M Spagnuolo, S Spinello, Modeling uncertain data with fuzzy B-splines Fuzzy Sets and Systems. ,vol. 113, pp. 397- 410 ,(2000) , 10.1016/S0165-0114(98)00146-8