Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia.

作者: María Luisa Martínez-Frías , Cristina A. de Frutos , Eva Bermejo , M. Angela Nieto ,

DOI: 10.1002/AJMG.A.33188

关键词:

摘要: Achondroplasia (ACH), thanatophoric dysplasia (TD) types I and II, hypochondroplasia (HCH), severe achondroplasia with developmental delay acanthosis nigricans (SADDAN) are all due to activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. We review clinical, epidemiological, radiological, molecular aspects, signaling pathways involved these conditions. It is known that FGFR3 essential regulate bone growth. The signal transducers activators of transcription (STAT1) pathway inhibition chondrocyte proliferation, mitogen-activated protein kinase (MAPK) differentiation. Hence, pivotal differentiation proliferation through two different active pathways. Recent studies on mechanisms demonstrated Snail1 participates control longitudinal appears be transduce during chondrogenesis. This result was confirmed a newborn infant TD, suggests new non-surgical therapeutic approaches, is, as encouraging target.

参考文章(85)
KENNETH J. NOONAN, MANUEL LEYES, FRANCISCO FORRIOL, JOSE CAÑADELL, Distraction Osteogenesis of the Lower Extremity with Use of Monolateral External Fixation. A Study of Two Hundred and Sixty-one Femora and Tibiae* Journal of Bone and Joint Surgery, American Volume. ,vol. 80, pp. 793- 806 ,(1998) , 10.2106/00004623-199806000-00003
A.T. Chellaiah, D.G. McEwen, S. Werner, J. Xu, D.M. Ornitz, Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. Journal of Biological Chemistry. ,vol. 269, pp. 11620- 11627 ,(1994) , 10.1016/S0021-9258(19)78170-8
William A. Horton, Gregory P. Lunstrum, Fibroblast growth factor receptor 3 mutations in achondroplasia and related forms of dwarfism. Reviews in Endocrine & Metabolic Disorders. ,vol. 3, pp. 381- 385 ,(2002) , 10.1023/A:1020914026829
C A Francomano, C A Francomano, R I Ortiz de Luna, W A Horton, M Machado, G A Bellus, I McIntosh, J T Hecht, I Kaitila, T W Hefferon, Achondroplasia is defined by recurrent G380R mutations of FGFR3. American Journal of Human Genetics. ,vol. 56, pp. 368- 373 ,(1995)
Martine Le Merrer, Francis Rousseau, Laurence Legeai-Mallet, Jean-Christophe Landais, Anna Pelet, Jacky Bonaventure, Marek Sanak, Jean Weissenbach, Claude Stoll, Arnold Munnich, Pierre Maroteaux, A gene for achondroplasia-hypochondroplasia maps to chromosome 4p. Nature Genetics. ,vol. 6, pp. 318- 321 ,(1994) , 10.1038/NG0394-318
DK Waller, A Correa, Tuan M Vo, Y Wang, C Hobbs, PH Langlois, K Pearson, PA Romitti, GM Shaw, JT Hecht, None, The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. American Journal of Medical Genetics Part A. ,vol. 146, pp. 2385- 2389 ,(2008) , 10.1002/AJMG.A.32485
Yoshiki Seino, Yoshitaka Yamanaka, Mayu Shinohara, Saeko Ikegami, Mio Koike, Mari Miyazawa, Masaru Inoue, Tadashi Moriwake, Hiroyuki Tanaka, Growth Hormone Therapy in Achondroplasia Hormone Research in Paediatrics. ,vol. 53, pp. 53- 56 ,(2000) , 10.1159/000023534
Rita Shiang, Leslie M. Thompson, Ya-Zhen Zhu, Deanna M. Church, Thomas J. Fielder, Maureen Bocian, Sara T. Winokur, John J. Wasmuth, Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. ,vol. 78, pp. 335- 342 ,(1994) , 10.1016/0092-8674(94)90302-6