Some Applications of Functional Equations and Inequalities to Information Measures

作者: J. Aczél

DOI: 10.1007/978-3-642-11004-7_1

关键词:

摘要: 1. Let \(\Gamma _{\text{N}} = \left\{ {\left( {{\text{p}}_{{\text{1,}}} {\text{p}}_{{\text{2,}}} {\text{ \ldots p}}_{\text{N}} } \right)\left| {\sum\limits_{{\text{k}} 1}^{\text{N}} {{\text{p}}_{\text{k}} 1,\,{\text{p}}_{\text{k}} \geq 0,\,{\text{k}} \equiv 1,2, \ldots,{\text{N}}} \right.} \right\}\) be the set of all complete finite discrete probability distributions (e.g. probabilities different outcomes an experiment, contents a communication, etc.) with N members (N 2,3,…). C. E. Shannon (1948) has introduced “Shannon entropy” (with understanding 0 log := 0) $${\text{H}}_{\text{N}} \left( {{\text{p}}_{\text{1}} {\text{,p}}_{\text{2}} {\text{, \right): - \sum\limits_{{\text{k 1}}}^{\text{N}} {{\text{p}}_{\text{K}} \log _2 {\text{p}}_{\text{K}} {\text{for}}\,{\text{all}}\,\left( {{\text{p}}_{\text{1}},{\text{p}}_{\text{2}}, {\text{p}}_{\text{N}} \right) \in \Gamma _{\text{N}},\,{\text{n}} 2,3, \ldots,$$ (1) as measure uncertainty (before experiment was made, message received or, equivalently, information (received from completed etc.). What justifies formula (1) and some further measures information?

参考文章(25)
B. Jessen, J. Karpf, A. Thorup, Some Functional Equations in Groups and Rings. Mathematica Scandinavica. ,vol. 22, pp. 257- 265 ,(1968) , 10.7146/MATH.SCAND.A-10889
A. Rényi, A. Renyi, On the Foundations of Information Theory Revue de l'Institut International de Statistique / Review of the International Statistical Institute. ,vol. 33, pp. 1- ,(1965) , 10.2307/1401301
J. Aczel, On different characterizations of entropies Lecture Notes in Mathematics. pp. 1- 11 ,(1969) , 10.1007/BFB0079114
Rudolf Borges, Zur Herleitung der Shannonschen Information Mathematische Zeitschrift. ,vol. 96, pp. 282- 287 ,(1967) , 10.1007/BF01123655
I. Heller, Western Data Processing Center, Contributions to Scientific Research in Management Mathematics of Computation. ,vol. 17, pp. 325- ,(1963) , 10.2307/2003878
J. Aczél, Z. Daróczy, Charakterisierung der Entropien positiver Ordnung und der shannonschen Entropie Acta Mathematica Hungarica. ,vol. 14, pp. 95- 121 ,(1963) , 10.1007/BF01901932
Z. Daróczy, On the measurable solutions of a functional equation Acta Mathematica Academiae Scientiarum Hungaricae. ,vol. 22, pp. 11- 14 ,(1971) , 10.1007/BF01895986