Moderate deviations for spectral measures of random matrix ensembles

作者: Jan Nagel

DOI:

关键词:

摘要: In this paper we consider the (weighted) spectral measure µn of a nn random matrix, distributed according to classical Gaussian, Laguerre or Jacobi ensemble, and show moderate deviation principle for standardised signed p n/an(µn − �). The centering measureis weak limit empirical eigenvalue distribution rate function is given in terms L 2 -norm density with respect �. proof involves tridiagonal representations ensembles which provide us sequence independent variables link orthogonal polynomials.

参考文章(39)
D. Petz, F. Hiai, Large deviations for functions of two random projection matrices arXiv: Operator Algebras. ,(2005)
Nelson Dunford, Jacob T. Schwartz, Linear operators. Part II. Spectral theory Birkhäuser Boston. pp. 89- 92 ,(2003) , 10.1007/978-1-4612-2070-1_13
H. M. Finucan, Some elementary aspects of the catalan numbers Springer, Berlin, Heidelberg. pp. 41- 45 ,(1976) , 10.1007/BFB0097366
Nicholas Rescher, The Threefold Way Forbidden Knowledge. pp. 83- 92 ,(1987) , 10.1007/978-94-009-3771-0_7
Roland Speicher, Alexandru Nica, Lectures on the Combinatorics of Free Probability ,(2006)
Ofer Zeitouni, Greg W. Anderson, Alice Guionnet, An Introduction to Random Matrices ,(2009)
Peter J Forrester, Log-Gases and Random Matrices ,(2010)
Peter Eichelsbacher, Hanna Doering, MODERATE DEVIATIONS FOR THE EIGENVALUE COUNTING FUNCTION OF WIGNER MATRICES arXiv: Probability. ,(2011)