Vehicle Detection Using Running Gaussian Average and Laplacian of Gaussian in the Nighttime

作者: Hyuntae Kim , Jingyu Do , Gyuyeong Kim , Jangsik Park , Yunsik Yu

DOI: 10.1007/978-3-642-35521-9_25

关键词:

摘要: In this paper, we propose a nighttime vehicle detection algorithm using RGA (Gunning Gaussian Average) and LoG (Laplacian of Gaussian). At the first stage, background could be estimated from CCTV input image. next 2-D function applied to And then “AND” operator between each other. Finally, threshold headlight brightness supported output AND operation. As results simulations recoded real video signal, it is shown that proposed useful for vehicles in nighttime.

参考文章(7)
Theory of Edge Detection Proceedings of The Royal Society B: Biological Sciences. ,vol. 207, pp. 187- 217 ,(1980) , 10.1098/RSPB.1980.0020
J. Kato, T. Watanabe, S. Joga, Y. Liu, H. Hase, An HMM/MRF-based stochastic framework for robust vehicle tracking IEEE Transactions on Intelligent Transportation Systems. ,vol. 5, pp. 142- 154 ,(2004) , 10.1109/TITS.2004.833791
Wei Zhang, QM Jonathan Wu, Xiaokang Yang, Xiangzhong Fang, Multilevel Framework to Detect and Handle Vehicle Occlusion IEEE Transactions on Intelligent Transportation Systems. ,vol. 9, pp. 161- 174 ,(2008) , 10.1109/TITS.2008.915647
C.C.C. Pang, W.W.L. Lam, N.H.C. Yung, A Method for Vehicle Count in the Presence of Multiple-Vehicle Occlusions in Traffic Images IEEE Transactions on Intelligent Transportation Systems. ,vol. 8, pp. 441- 459 ,(2007) , 10.1109/TITS.2007.902647
B.T. Morris, M.M. Trivedi, Learning, Modeling, and Classification of Vehicle Track Patterns from Live Video IEEE Transactions on Intelligent Transportation Systems. ,vol. 9, pp. 425- 437 ,(2008) , 10.1109/TITS.2008.922970
D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, S. Russell, Towards robust automatic traffic scene analysis in real-time international conference on pattern recognition. ,vol. 1, pp. 126- 131 ,(1994) , 10.1109/ICPR.1994.576243
C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland, Pfinder: real-time tracking of the human body IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 19, pp. 780- 785 ,(1997) , 10.1109/34.598236