The principle of virtual work and integral laws of motion

作者: Stuart S. Antman , John E. Osborn

DOI: 10.1007/BF00248135

关键词:

摘要: This paper furnishes a simple constructive proof of the equivalence integral laws motion for continua to Principle Virtual Work. The approach used is designed avoid artificiality introducing classical equations in an intermediate step. hypotheses employed are virtually weakest possible that consistent with requirement integrals appearing these formulations make sense as Lebesgue integrals. Particular attention devoted treatment boundary conditions, which may assume very general form.

参考文章(30)
John J. Benedetto, Real variable and integration ,(1976)
Antoni Zygmund, Richard L. Wheeden, Measure and integral ,(1977)
C. Truesdell, R. Toupin, The Classical Field Theories Handbuch der Physik. ,vol. 2, pp. 226- 858 ,(1960) , 10.1007/978-3-642-45943-6_2
Gaetano Fichera, Boundary Value Problems of Elasticity with Unilateral Constraints Linear Theories of Elasticity and Thermoelasticity. pp. 391- 424 ,(1973) , 10.1007/978-3-662-39776-3_4
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
Morton E. Gurtin, William O. Williams, An axiomatic foundation for continuum thermodynamics Archive for Rational Mechanics and Analysis. ,vol. 26, pp. 83- 117 ,(1967) , 10.1007/BF00285676
Morton E Gurtin, Victor J Mizel, William O Williams, A NOTE ON CAUCHY'S STRESS THEOREM Journal of Mathematical Analysis and Applications. ,vol. 22, pp. 398- 401 ,(1968) , 10.1016/0022-247X(68)90181-9
M. J. Turteltaub, Eli Sternberg, ON CONCENTRATED LOADS AND GREEN'S FUNCTIONS IN ELASTOSTATICS. Archive for Rational Mechanics and Analysis. ,vol. 29, pp. 193- 240 ,(1968) , 10.1007/BF00251626