Localization of Frames,Banach Frames, and theInvertibility of the FrameOperator

作者: Karlheinz Gr�chenig

DOI: 10.1007/S00041-004-8007-1

关键词:

摘要: We introduce a new concept to describe the localization of frames. In our main result we show that frame operator preserves this and dual possesses the same property. As an application certain frames for Hilbert spaces extend automatically Banach Using abstract theory, derive results on the construction nonuniform Gabor solve problem about non-uniform sampling in shift-invariant spaces.

参考文章(41)
Karlheinz Gr�chenig, Describing Functions: Atomic Decompositions Versus Frames. Monatshefte für Mathematik. ,vol. 112, pp. 1- 42 ,(1991) , 10.1007/BF01321715
Jörgen Löfström, Jöran Bergh, Interpolation Spaces: An Introduction ,(2011)
Akram Aldroubi, Hans Feichtinger, Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory Proceedings of the American Mathematical Society. ,vol. 126, pp. 2677- 2686 ,(1998) , 10.1090/S0002-9939-98-04319-6
Karlheinz Gr�chenig, Irregular sampling of wavelet and short-time Fourier transforms Constructive Approximation. ,vol. 9, pp. 283- 297 ,(1993) , 10.1007/BF01198007
Ronald R. Coifman, Guido L. Weiss, Richard Rochberg, M. H. Taibleson, Representation theorems for holomorphic and harmonic functions in L[P] Sociéte mathématique de France. ,(1980)
W. Heller, J.J. Benedetto, Irregular sampling and the theory of frames, I Note di Matematica. ,vol. 10, pp. 103- 125 ,(1990) , 10.1285/I15900932V10SUPN1P103
Karlheinz Gröchenig, Foundations of Time-Frequency Analysis ,(2000)
Karlheinz Gröchenig, Michael Leinert, Wiener's lemma for twisted convolution and Gabor frames Journal of the American Mathematical Society. ,vol. 17, pp. 1- 18 ,(2003) , 10.1090/S0894-0347-03-00444-2
Akram Aldroubi, Qiyu Sun, Wai-Shing Tang, p-Frames and Shift Invariant Subspaces of L p Journal of Fourier Analysis and Applications. ,vol. 7, pp. 1- 22 ,(2001) , 10.1007/S00041-001-0001-2