Prediction of the Superficial Heat Source Parameters for TIG Heating Process Using FEM and ANN Modeling

作者: Joanna Wróbel , Adam Kulawik

DOI: 10.3390/E21100954

关键词:

摘要: The basic problem of the numerical model’s quenching process is establishing characteristics boundary conditions. existing descriptions conditions, which represent parameters equipment used in heat treatment processes, do not accurately reflect actual In present study, method choice for superficial source TIG (tungsten inert gas) heating modeled using artificial neural networks (ANN) and finite element (FEM). A comparison calculations obtained from model non-steady state transfer with results experimental studies presented. possibility ANN to compute conditions analyzed. multilayer feed-forward backpropagation network developed trained value temperature selected nodes simulation.

参考文章(9)
F. Lambiase, A.M. Di Ilio, A. Paoletti, Prediction of laser hardening by means of Neural Network Procedia CIRP. ,vol. 12, pp. 181- 186 ,(2013) , 10.1016/J.PROCIR.2013.09.032
Nils Stenbacka, On arc efficiency in gas tungsten arc welding Soldagem & Inspecao. ,vol. 18, pp. 380- 390 ,(2013) , 10.1590/S0104-92242013000400010
Chaowen Li, Yong Wang, Huanxiao Zhan, Tao Han, Bin Han, Weimin Zhao, Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing Materials & Design. ,vol. 31, pp. 3366- 3373 ,(2010) , 10.1016/J.MATDES.2010.01.054
I. Magnabosco, P. Ferro, A. Tiziani, F. Bonollo, Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis Computational Materials Science. ,vol. 35, pp. 98- 106 ,(2006) , 10.1016/J.COMMATSCI.2005.03.010
Amit Powar, Prashant Date, Modeling of microstructure and mechanical properties of heat treated components by using Artificial Neural Network Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 628, pp. 89- 97 ,(2015) , 10.1016/J.MSEA.2015.01.044
Gholamreza Khalaj, Ali Nazari, Hesam Pouraliakbar, PREDICTION OF MARTENSITE FRACTION OF MICROALLOYED STEEL BY ARTIFICIAL NEURAL NETWORKS Neural Network World. ,vol. 23, pp. 117- 130 ,(2013) , 10.14311/NNW.2013.23.009
Hesam Pouraliakbar, Mohammad-javad Khalaj, Mohsen Nazerfakhari, Gholamreza Khalaj, Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels Journal of Iron and Steel Research International. ,vol. 22, pp. 446- 450 ,(2015) , 10.1016/S1006-706X(15)30025-X
Joanna Wróbel, Adam Kulawik, Calculations of the heat source parameters on the basis of temperature fields with the use of ANN Neural Computing and Applications. ,vol. 31, pp. 7583- 7593 ,(2019) , 10.1007/S00521-018-3594-Y
Joanna Wróbel, Adam Kulawik, Analysis of the influence of material parameters of the numerical model on the obtained shape of the heat affected zone for the TIG heating process American Institute of Physics Conference Series. ,vol. 1978, pp. 470029- ,(2018) , 10.1063/1.5044099