System and method of executing neural networks

作者: Aleksandar Zlateski , Nir Shavit , Alexander Matveev

DOI:

关键词:

摘要: A system and method of inferring a neural network (NN) on one or more target computing devices. The NN may include plurality layers, where at least layer includes kernels. Embodiments include: receiving data structure representing the NN; analyzing to produce tasks, each task computations pertaining kernel selecting sparse version replacing with version; compiling tasks respective tensor columns, columns are adapted fit in cache memories devices, instruction code that represents computation NN.

参考文章(72)
Elmoustapha Ould-Ahmed-Vall, Altug Koker, Mike B. MacPherson, Anbang Yao, Sara S. Baghsorkhi, Linda L. Hurd, John C. Weast, Dukhwan Kim, Abhishek R. Appu, Joydeep Ray, Ben J. Ashbaugh, Kevin Nealis, Michael S. Strickland, Ping T. Tang, Liwei Ma, Xiaoming Chen, Barath Lakshmanan, Compute optimizations for low precision machine learning operations ,(2017)
Chirca Kai, Redfern Arthur John, Anderson Timothy David, Luo Chenchi, Yu Zhenhua, Implementing Fundamental Computational Primitives Using A Matrix Multiplication Accelerator (MMA) ,(2018)
David Budden, Nir Shavit, Alexander Matveev, Shraman Ray Chaudhuri, Shibani Santurkar, Deep Tensor Convolution on Multicores arXiv: Computer Vision and Pattern Recognition. ,(2016)
Mark A. Anders, Himanshu Kaul, Sanu Mathew, Variable format, variable sparsity matrix multiplication instruction ,(2018)
Janik Kenneth J, Satish Nadathur Rajagopalan, Suprun Alexey, Narayanamoorthy Srinivasan, Accelerator for sparse-dense matrix multiplication ,(2020)
Zohar Ronen, Hughes Christopher J, Espig Michael, Baum Dan, Guilford James, Gopal Vinodh, Toll Bret, Charney Mark J, Valentine Robert, Ould-Ahmed-Vall Elmoustapha, Sade Raanan, Feghali Wajdi K, Heinecke Alexander F, Systems and methods for performing matrix compress and decompress instructions ,(2020)
Engelcke Martin Helmut, Van Der Maaten Laurentius Johannes Paulus, Graham Benjamin Thomas, Analyzing Spatially-Sparse Data Based on Submanifold Sparse Convolutional Neural Networks ,(2019)