RGBD Salient Object Detection via Deep Fusion

作者: Yandong Tang , Qingxiong Yang , Shengfeng He , Liangqiong Qu , Jiandong Tian

DOI: 10.1109/TIP.2017.2682981

关键词:

摘要: … fusion framework to automatically learn the interaction mechanism between RGB and depth-induced saliency features for RGBD … vectors from the original RGBD image, which include …

参考文章(55)
Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, Rongrong Ji, RGBD Salient Object Detection: A Benchmark and Algorithms european conference on computer vision. pp. 92- 109 ,(2014) , 10.1007/978-3-319-10578-9_7
Yichen Wei, Fang Wen, Wangjiang Zhu, Jian Sun, Geodesic Saliency Using Background Priors Computer Vision – ECCV 2012. pp. 29- 42 ,(2012) , 10.1007/978-3-642-33712-3_3
Congyan Lang, Tam V. Nguyen, Harish Katti, Karthik Yadati, Mohan Kankanhalli, Shuicheng Yan, Depth Matters: Influence of Depth Cues on Visual Saliency Computer Vision – ECCV 2012. pp. 101- 115 ,(2012) , 10.1007/978-3-642-33709-3_8
Li Zhou, Zhaohui Yang, Qing Yuan, Zongtan Zhou, Dewen Hu, Salient Region Detection via Integrating Diffusion-Based Compactness and Local Contrast IEEE Transactions on Image Processing. ,vol. 24, pp. 3308- 3320 ,(2015) , 10.1109/TIP.2015.2438546
Yun Zhang, Gangyi Jiang, Mei Yu, Ken Chen, Stereoscopic visual attention model for 3d video conference on multimedia modeling. pp. 314- 324 ,(2010) , 10.1007/978-3-642-11301-7_33
Guanbin Li, Yizhou Yu, Visual saliency based on multiscale deep features computer vision and pattern recognition. pp. 5455- 5463 ,(2015) , 10.1109/CVPR.2015.7299184
Yao Qin, Huchuan Lu, Yiqun Xu, He Wang, Saliency detection via Cellular Automata computer vision and pattern recognition. pp. 110- 119 ,(2015) , 10.1109/CVPR.2015.7298606
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
Huazhu Fu, Dong Xu, Stephen Lin, Jiang Liu, Object-based RGBD image co-segmentation with mutex constraint computer vision and pattern recognition. pp. 4428- 4436 ,(2015) , 10.1109/CVPR.2015.7299072