Higher Anomalies, Higher Symmetries, and Cobordisms II: Lorentz Symmetry Extension and Enriched Bosonic/Fermionic Quantum Gauge Theory

作者: Juven Wang , Yunqin Zheng , Zheyan Wan

DOI: 10.4310/AMSA.2020.V5.N2.A2

关键词:

摘要: We systematically study Lorentz symmetry extensions in quantum field theories (QFTs) and their 't Hooft anomalies via cobordism. The total $G'$ can be expressed terms of the extension $G_L$ by an internal global $G$ as $1 \to G G' G_L 1$. By enumerating all possible extensions, other than familiar SO/Spin/O/Pin$^{\pm}$ groups, we introduce a new EPin group (in contrast to DPin), provide natural physical interpretations exotic groups E($d$), EPin($d$), (SU(2)$\times$E(d))/$\mathbb{Z}_2$, (SU(2)$\times$EPin(d))/$\mathbb{Z}_2^{\pm}$, etc. Adams spectral sequence, classify $d$d Symmetry Protected Topological states (SPTs invertible TQFTs) $(d-1)$d QFTs co/bordism invariants $d\leq 5$. further gauge $G$, symmetry-enriched Yang-Mills theory with discrete theta given gauged SPTs. not only enlist bosonic but also discover fermionic (when contains graded fermion parity $\mathbb{Z}_2^F$), applicable (e.g., Quantum Spin Liquids) or electrons) condensed matter systems. For pure theory, there is one form $I_{[1]}$ associated center $G$. emergent $I_{[1]}\times G_L$ higher cobordism well QFT analysis. focus on simply connected $G=$SU(2) briefly comment non-simply $G=$SO(3), U(1), simple Lie Standard Model (SU(3)$\times$SU(2)$\times$U(1))/$\mathbb{Z}_q$. SPTs protected symmetry, symmetry-extended trivialization for boundary states.

参考文章(47)
Nicolas Bourbaki, Lie groups and Lie algebras ,(1998)
J. S. Bell, R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 60, pp. 47- 61 ,(1969) , 10.1007/BF02823296
Edward Witten, An SU(2) anomaly Physics Letters B. ,vol. 117, pp. 324- 328 ,(1982) , 10.1016/0370-2693(82)90728-6
Nathan Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity Journal of High Energy Physics. ,vol. 2010, pp. 70- ,(2010) , 10.1007/JHEP07(2010)070
Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, Xiao-Gang Wen, Symmetry protected topological orders and the group cohomology of their symmetry group Physical Review B. ,vol. 87, pp. 155114- ,(2013) , 10.1103/PHYSREVB.87.155114
Chong Wang, T. Senthil, Boson topological insulators: A window into highly entangled quantum phases Physical Review B. ,vol. 87, pp. 235122- ,(2013) , 10.1103/PHYSREVB.87.235122
Cenke Xu, Yi-Zhuang You, Bosonic short-range entangled states beyond group cohomology classification Physical Review B. ,vol. 91, pp. 054406- ,(2015) , 10.1103/PHYSREVB.91.054406
Edward Witten, Fermion Path Integrals And Topological Phases Reviews of Modern Physics. ,vol. 88, pp. 035001- ,(2016) , 10.1103/REVMODPHYS.88.035001
Howard Georgi, S. L. Glashow, Unity of All Elementary Particle Forces Physical Review Letters. ,vol. 32, pp. 438- 441 ,(1974) , 10.1103/PHYSREVLETT.32.438