Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid

作者: Yingdong Zhou , Mei Li , Yaguang Chen , Changwei Hu

DOI: 10.1007/S10811-020-02146-9

关键词:

摘要: The conversion of the macroalgae Ulva prolifera into monosaccharides and value-added furfurals in water or water-tetrahydrofuran co-solvent with formic acid was studied. At 160 °C water, different Bronsted acids (initial pH = 2) were tested. use obtained highest yields total (Glu 18.8 wt%, Xyl 12.9 wt%, Rha 42.1 wt%), while lower other inorganic (HCl, HNO3, H2SO4). 200 °C, (furfural 7.3 wt%, 5-hydroxymethylfurufural 10.6 wt%, 5-methylfurfural 17.8 wt%) presence water-tetrahydrofuran-NaCl biphasic system. Formic acted as catalyst for hydrolysis dehydration, THF protector formed Furthermore, increase reaction temperature addition NaCl promoted saccharides formation levulinic acid.

参考文章(43)
J. J. Wang, Z. C. Tan, C. C. Zhu, G. Miao, L. Z. Kong, Y. H. Sun, One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite Green Chemistry. ,vol. 18, pp. 452- 460 ,(2016) , 10.1039/C5GC01850A
Jakob Albert, Rene Wölfel, Andreas Bösmann, Peter Wasserscheid, Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators Energy and Environmental Science. ,vol. 5, pp. 7956- 7962 ,(2012) , 10.1039/C2EE21428H
Masako Yamamoto, Physicochemical Studies on Sulfated Polysaccharides Extracted from Seaweeds at Various Temperatures Agricultural and biological chemistry. ,vol. 44, pp. 589- 593 ,(1980) , 10.1080/00021369.1980.10863990
Wenchao Yang, Xianguo Li, Shishi Liu, Lijuan Feng, Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Conversion and Management. ,vol. 87, pp. 938- 945 ,(2014) , 10.1016/J.ENCONMAN.2014.08.004
Bing Li, Song Liu, Ronge Xing, Kecheng Li, Rongfeng Li, Yukun Qin, Xueqin Wang, Zhenhua Wei, Pengcheng Li, Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities Carbohydrate Polymers. ,vol. 92, pp. 1991- 1996 ,(2013) , 10.1016/J.CARBPOL.2012.11.088
J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science. ,vol. 327, pp. 1110- 1114 ,(2010) , 10.1126/SCIENCE.1184362
T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils Science. ,vol. 330, pp. 1222- 1227 ,(2010) , 10.1126/SCIENCE.1194218
G. Miao, C. C. Zhu, J. J. Wang, Z. C. Tan, L. Wang, J. L. Liu, L. Z. Kong, Y. H. Sun, Efficient one-pot production of 1,2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water Green Chemistry. ,vol. 17, pp. 2538- 2544 ,(2015) , 10.1039/C4GC02467B
Jin Zhao, Peng Jiang, Zhengyi Liu, Jinfeng Wang, Yulin Cui, Song Qin, Genetic variation of Ulva (Enteromorpha) prolifera (Ulvales, Chlorophyta)—the causative species of the green tides in the Yellow Sea, China Journal of Applied Phycology. ,vol. 23, pp. 227- 233 ,(2011) , 10.1007/S10811-010-9563-1